1,303 research outputs found
Temperature Imaging using Quadriwave Shearing Interferometry. Applications in Thermoplasmonics
International audienceThe use of illuminated gold nanoparticles as ideal nanosources of heat is the basis of numerous research activities and applications in physics, chemistry, biology and medicine. This field defines the area recently named Thermoplasmonics [1]. In most of the activities related to Thermoplasmonics, probing the temperature at the vicinity of the metal nanoparticles is not an easy task. In this context, we recently developed a novel optical microscopy technique, named TIQSI, aimed at mapping the temperature around plasmonic nanoparticles [2]. The approach is based on the measure of the thermal-induced variation of the refractive index surrounding the sources of heat. The TIQSI technique cumulates all the advantages a thermal microscopy technique may require: i) high resolution (diffraction limited), ii) high readout rate (less than one image per second), iii) high temperature sensitivity (<1°C), iv) large accessible temperature range, v) temperature can be measured without fluorescence labelling or any other kind of thermal probe, v) no need to use sophisticated devices such as heterodyne detection, acousto-optic modulator, spectrometer, etc, like previous thermal imaging techniques. In this presentation, we will first introduce the TIQSI technique, its principle and capabilities. We will then present several recent applications made it possible by this new thermal imaging technique. In particular, we shall explain how this technique have been already used to quantitatively measure the absorption cross section of gold nanoparticles [3] and graphene sheets, how it can be used to map the temperature in real time in living cells [4], how it can help to design temperature distributions at will at the microscale using gold nanoparticles [5,7], and how it can be used to investigate thermal-induced phenomena in hydro- dynamics and phase transitions [6]
MicroRNA-9 controls dendritic development by targeting REST
MicroRNAs (miRNAs) are conserved noncoding RNAs that function as posttranscriptional regulators of gene expression. miR-9 is one of the most abundant miRNAs in the brain. Although the function of miR-9 has been well characterized in neural progenitors, its role in dendritic and synaptic development remains largely unknown. In order to target miR-9 in vivo, we developed a transgenic miRNA sponge mouse line allowing conditional inactivation of the miR-9 family in a spatio-temporal-controlled manner. Using this novel approach, we found that miR-9 controls dendritic growth and synaptic transmission in vivo. Furthermore, we demonstrate that miR-9-mediated downregulation of the transcriptional repressor REST is essential for proper dendritic growth.Fil: Giusti, Sebastian Alejandro. Max Planck Institute of Psychiatry; AlemaniaFil: Vogl, Annette M.. Max Planck Institute of Psychiatry; AlemaniaFil: Brockmann, Marina M.. Max Planck Institute of Psychiatry; AlemaniaFil: Vercelli, Claudia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Rein, Martin L.. Max Planck Institute of Psychiatry; AlemaniaFil: Trümbach, Dietrich. Helmholtz Zentrum München; AlemaniaFil: Wurst, Wolfgang. Helmholtz Zentrum München; AlemaniaFil: Cazalla, Demian. University of Utah; Estados UnidosFil: Stein, Valentin. Universitaet Bonn; AlemaniaFil: Deussing, Jan M.. Max Planck Institute of Psychiatry; AlemaniaFil: Refojo, Damian. Max Planck Institute of Psychiatry; Alemani
Neurogenin2 regulates the initial axon guidance of cortical pyramidal neurons projecting medially to the corpus callosum
<p>Abstract</p> <p>Background</p> <p>The formation of the mammalian central nervous system requires the establishment of complex neural circuits between a diverse array of neuronal subtypes. Here we report that the proneural transcription factor Neurogenin2 (Ngn2) is crucial for the proper specification of cortical axon projections.</p> <p>Results</p> <p>The genetic loss of Ngn2 in mice results in fewer callosal axons projecting towards the midline as well as abnormal midline crossing. shRNA-mediated knockdown of Ngn2 revealed its cell-autonomous requirement for the proper projection of axons from layer 2/3 pyramidal neurons to the midline <it>in vivo</it>. We found that the acute loss of Ngn2 <it>in vivo </it>induces the axon of superficial layer 2/3 neurons to project laterally towards aberrant cortical and subcortical targets.</p> <p>Conclusions</p> <p>These and previous results demonstrate that Ngn2 is required for the coordinated specification of cardinal features defining the phenotype of cortical pyramidal neurons, including their migration properties, dendritic morphology and axonal projection.</p
Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II-III cortical neurons
© 2014 Wiley Periodicals, Inc. A number of recent reports implicate the differential regulation of apical and basal dendrites in autism disorders and in the higher functions of the human brain. They show that apical and basal dendrites are functionally specialized and that mechanisms regulating their development have important consequences for neuron function. The molecular identity of layer II-III neurons of the cerebral cortex is determined by the overlapping expression of Cux1 and Cux2. We previously showed that both Cux1 and Cux2 are necessary and nonredundant for normal dendrite development of layer II-III neurons. Loss of function of either gene reduced dendrite arbors, while overexpression increased dendritic complexity and suggested additive functions. We herein characterize the function of Cux1 and Cux2 in the development of apical and basal dendrites. By in vivo loss and gain of function analysis, we show that while the expression level of either Cux1 or Cux2 influences both apical and basal dendrites, they have distinct effects. Changes in Cux1 result in a marked effect on the development of the basal compartment whereas modulation of Cux2 has a stronger influence on the apical compartment. These distinct effects of Cux genes might account for the functional diversification of layer II-III neurons into different subpopulations, possibly with distinct connectivity patterns and modes of neuron response. Our data suggest that by their differential effects on basal and apical dendrites, Cux1 and Cux2 can promote the integration of layer II-III neurons in the intracortical networks in highly specific ways.Peer Reviewe
AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
Mitochondria undergo fragmentation in response to electron transport chain (ETC) poisons and mitochondrial DNA–linked disease mutations, yet how these stimuli mechanistically connect to the mitochondrial fission and fusion machinery is poorly understood. We found that the energy-sensing adenosine monophosphate (AMP)–activated protein kinase (AMPK) is genetically required for cells to undergo rapid mitochondrial fragmentation after treatment with ETC inhibitors. Moreover, direct pharmacological activation of AMPK was sufficient to rapidly promote mitochondrial fragmentation even in the absence of mitochondrial stress. A screen for substrates of AMPK identified mitochondrial fission factor (MFF), a mitochondrial outer-membrane receptor for DRP1, the cytoplasmic guanosine triphosphatase that catalyzes mitochondrial fission. Nonphosphorylatable and phosphomimetic alleles of the AMPK sites in MFF revealed that it is a key effector of AMPK-mediated mitochondrial fission
Liaison sans fils à 60 GHz et réseau domestique multi-gigabit/s basé sur une infrastructure radio sur fibre bas coût
National audienceLe projet FUI8 ORIGIN (Optical Radio Infrastructure for Gigabit/s Indoor Network) s'adresse au marché du Réseau Local Domestique (RLD) en proposant une infrastructure bas coût qui combine l'efficacité de la fibre optique pour la diffusion radio avec les avantages d'une transmission sans fils. Les premières réalisations et les tests réussis sont présentés dans ce papier
Radio sur fibre pour un réseau local domestique millimétrique
National audienceLe projet FUI ORIGIN (Optical-Radio Infrastructure for Gigabit/s Indoor Networks) adresse le marché du Réseau Local Domestique pour lequel il propose une nouvelle infrastructure à très haut débit associant un câblage à fibre optique avec une diffusion radio 60GHz. Les premiers tests de cette infrastructure ont donné des résultats probants : un lien Radio sur Fibre en fréquence intermédiaire étendant la portée d'une transmission radio millimétrique est ici proposé et caractérisé complètement en termes d'EVM. Ce concept est validé par l'utilisation de produits commerciaux Wireless HD. Les études se poursuivent pour intégrer les systèmes optique-microondes en utilisant des composants bas coûts et innovants, comme les phototransistors SiGe/Si et des VCSEL analogiques
Intrinsically determined cell death of developing cortical interneurons
Cortical inhibitory circuits are formed by GABAergic interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis1-5, is that cortical interneurons are overproduced, and then following their migration into cortex, excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we have characterized the developmental cell death of mouse cortical interneurons in vivo, in vitro, and following transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax- (Bcl-2 associated X-) dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Remarkably, over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by central nervous system (CNS) neurons6-8. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Together, our findings indicate that interneuron cell death is intrinsically determined, either cell-autonomously, or through a population-autonomous competition for survival signals derived from other interneurons
Thermal Imaging of Nanostructures by Quantitative Optical Phase Analysis
International audienceWe introduce an optical microscopy technique aimed at characterizing the heat generation arising from nanostructures, in a comprehensive and quantitative manner. Namely, the technique permits (i) mapping the temperature distribution around the source of heat, (ii) mapping the heat power density delivered by the source, and (iii) retrieving the absolute absorption cross section of light-absorbing structures. The technique is based on the measure of the thermal-induced refractive index variation of the medium surrounding the source of heat. The measurement is achieved using an association of a regular CCD camera along with a modified Hartmann diffraction grating. Such a simple association makes this technique straightforward to implement on any conventional microscope with its native broadband illumination conditions. We illustrate this technique on gold nanoparticles illuminated at their plasmonic resonance. The spatial resolution of this technique is diffraction limited, and temperature variations weaker than 1 K can be detected
Two specific populations of GABAergic neurons originating from the medial and the caudal ganglionic eminences aid in proper navigation of callosal axons.
The corpus callosum (CC) plays a crucial role in interhemispheric communication. It has been shown that CC formation relies on the guidepost cells located in the midline region that include glutamatergic and GABAergic neurons as well as glial cells. However, the origin of these guidepost GABAergic neurons and their precise function in callosal axon pathfinding remain to be investigated. Here, we show that two distinct GABAergic neuronal subpopulations converge toward the midline prior to the arrival of callosal axons. Using in vivo and ex vivo fate mapping we show that CC GABAergic neurons originate in the caudal and medial ganglionic eminences (CGE and MGE) but not in the lateral ganglionic eminence (LGE). Time lapse imaging on organotypic slices and in vivo analyses further revealed that CC GABAergic neurons contribute to the normal navigation of callosal axons. The use of Nkx2.1 knockout (KO) mice confirmed a role of these neurons in the maintenance of proper behavior of callosal axons while growing through the CC. Indeed, using in vitro transplantation assays, we demonstrated that both MGE- and CGE-derived GABAergic neurons exert an attractive activity on callosal axons. Furthermore, by combining a sensitive RT-PCR technique with in situ hybridization, we demonstrate that CC neurons express multiple short and long range guidance cues. This study strongly suggests that MGE- and CGE-derived interneurons may guide CC axons by multiple guidance mechanisms and signaling pathways. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 647-672, 2013
- …
