3 research outputs found

    Finding a Second Wind: Speeding Up Graph Traversal Queries in RDBMSs Using Column-Oriented Processing

    Full text link
    Recursive queries and recursive derived tables constitute an important part of the SQL standard. Their efficient processing is important for many real-life applications that rely on graph or hierarchy traversal. Position-enabled column-stores offer a novel opportunity to improve run times for this type of queries. Such systems allow the engine to explicitly use data positions (row ids) inside its core and thus, enable novel efficient implementations of query plan operators. In this paper, we present an approach that significantly speeds up recursive query processing inside RDBMSes. Its core idea is to employ a particular aspect of column-store technology (late materialization) which enables the query engine to manipulate data positions during query execution. Based on it, we propose two sets of Volcano-style operators intended to process different query cases. In order validate our ideas, we have implemented the proposed approach in PosDB, an RDBMS column-store with SQL support. We experimentally demonstrate the viability of our approach by providing a comparison with PostgreSQL. Experiments show that for breadth-first search: 1) our position-based approach yields up to 6x better results than PostgreSQL, 2) our tuple-based one results in only 3x improvement when using a special rewriting technique, but it can work in a larger number of cases, and 3) both approaches can't be emulated in row-stores efficiently

    Solving Data Quality Problems with Desbordante: a Demo

    Full text link
    Data profiling is an essential process in modern data-driven industries. One of its critical components is the discovery and validation of complex statistics, including functional dependencies, data constraints, association rules, and others. However, most existing data profiling systems that focus on complex statistics do not provide proper integration with the tools used by contemporary data scientists. This creates a significant barrier to the adoption of these tools in the industry. Moreover, existing systems were not created with industrial-grade workloads in mind. Finally, they do not aim to provide descriptive explanations, i.e. why a given pattern is not found. It is a significant issue as it is essential to understand the underlying reasons for a specific pattern's absence to make informed decisions based on the data. Because of that, these patterns are effectively rest in thin air: their application scope is rather limited, they are rarely used by the broader public. At the same time, as we are going to demonstrate in this presentation, complex statistics can be efficiently used to solve many classic data quality problems. Desbordante is an open-source data profiler that aims to close this gap. It is built with emphasis on industrial application: it is efficient, scalable, resilient to crashes, and provides explanations. Furthermore, it provides seamless Python integration by offloading various costly operations to the C++ core, not only mining. In this demonstration, we show several scenarios that allow end users to solve different data quality problems. Namely, we showcase typo detection, data deduplication, and data anomaly detection scenarios
    corecore