261 research outputs found
Thermoregulatory and cardiovascular responses to creatine, glycerol and alpha lipoic acid in trained cyclists
<p>Abstract</p> <p>Background</p> <p>It has been shown that supplementation with creatine (Cr) and glycerol (Gly), when combined with glucose (Glu) necessary for the enhancement of Cr uptake by skeletal muscle, induces significant improvements in thermoregulatory and cardiovascular responses during exercise in the heat.</p> <p>Purpose</p> <p>To determine whether Cr/Gly-induced thermoregulatory and cardiovascular responses are maintained when the majority (~75%) of the Glu in the Cr/Gly supplement is replaced with the insulintropic agent alpha lipoic acid (Ala).</p> <p>Methods</p> <p>22 healthy endurance trained cyclists were randomly assigned to receive either 20 g/day (4 × 5 g/day) of Cr, 2 g <sup>.</sup>kg<sup>-1</sup> BM per day (4 × 0.5 g <sup>.</sup>kg<sup>-1</sup> BM per day) of Gly and 150 g/day (4 × 37.5 g/day) of Glu or 20 g/day (4 × 5 g/day) of Cr monohydrate, 2 g <sup>.</sup>kg<sup>-1</sup> BM per day (4 × 0.5 g <sup>.</sup>kg<sup>-1</sup> BM per day) of Gly (100 g/day (4 × 25 g/day) of Glu and 1000 mg/day (4 × 250 mg/day) of Ala for 7 days for 7 days. Exercise trials were conducted pre- and post-supplementation and involved 40 min of constant-load cycling exercise at 70% O<sub>2</sub> max by a self-paced 16.1 km time trial at 30°C and 70% relative humidity.</p> <p>Results</p> <p>Median and range values of TBW increased significantly by 2.1 (1.3-3.3) L and 1.8 (0.2-4.6) L in Cr/Gly/Glu and Cr/Gly/Glu/Ala groups respectively (<it>P</it> = 0.03) and of BM not significantly by 1.8 (0.2-3.0) kg and 1.2 (0.5-2.1) kg in Cr/Gly/Glu and in Cr/Gly/Glu/Ala, respectively (<it>P</it> = 0.75). During constant load exercise, heart rate (HR) and core temperature (Tcore) were significantly lower post-supplementation: HR was reduced on average by 3.3 ± 2.1 beats/min and by 4.8 ± 3.3 beats/min (mean ± SD) and Tcore by 0.2 ± 0.1 (mean ± SD) in the Cr/Gly/Glu and Cr/Gly/Glu/Ala, respectively The reduction in HR and Tcore was not significantly different between the supplementation groups.</p> <p>Conclusions</p> <p>In comparison to the established hyper hydrating Cr/Gly/Glu supplement, supplement containing Cr/Gly/Ala and decreased amount of Glu provides equal improvements in thermoregulatory and cardiovascular responses during exercise in the heat.</p
Effects of glycerol and creatine hyperhydration on doping-relevant blood parameters
Glycerol is prohibited as an ergogenic aid by the World Anti-Doping Agency (WADA) due to the potential for its plasma expansion properties to have masking effects. However, the scientific basis of the inclusion of Gly as a “masking agent” remains inconclusive. The purpose of this study was to determine the effects of a hyperhydrating supplement containing Gly on doping-relevant blood parameters. Nine trained males ingested a hyperhydrating mixture twice per day for 7 days containing 1.0 g•kg<sup>−1</sup> body mass (BM) of Gly, 10.0 g of creatine and 75.0 g of glucose. Blood samples were collected and total hemoglobin (Hb) mass determined using the optimized carbon monoxide (CO) rebreathing method pre- and post-supplementation. BM and total body water (TBW) increased significantly following supplementation by 1.1 ± 1.2 and 1.0 ± 1.2 L (BM, P < 0.01; TBW, P < 0.01), respectively. This hyperhydration did not significantly alter plasma volume or any of the doping-relevant blood parameters (e.g., hematocrit, Hb, reticulocytes and total Hb-mass) even when Gly was clearly detectable in urine samples. In conclusion, this study shows that supplementation with hyperhydrating solution containing Gly for 7 days does not significantly alter doping-relevant blood parameters
Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes
Background: Physical exercise has been reported to increase the bioavailability of citrus flavanones.
Objective: To investigate the bioavailability of orange juice (OJ) (poly)phenols in endurance-trained men before and after cessation of training for 7 days.
Design: Ten fit endurance-trained males, with a maximal oxygen consumption of 58.2 ± 5.3 mL/kg/min, followed a low (poly)phenol diet for 2 d before drinking 500 mL of OJ, containing 398 µmol of (poly)phenols of which 330 µmol were flavanones. After the volunteers stopped training for 7 days the feeding study was repeated. Urine samples were collected 12 h pre- and 24 h post-OJ orange consumption. Bioavailability was assessed by the quantitative analysis of urinary flavanone metabolites and (poly)phenol catabolites using HPLC-HR-MS.
Results: While training, 0-24 h urinary excretion of flavanone metabolites, mainly hesperetin-3-O-glucuronide, hesperetin-3´-sulfate, naringenin-4´-O-glucuronide, naringenin-7-O-glucuronide, was equivalent to 4.2% of OJ flavanone intake. This increased significantly to 5.2% when OJ was consumed after the volunteers stopped training for 7 days. Overall, this trend, although not significant, was also observed with OJ-derived colonic catabolites which after supplementation in the trained state were excreted in amounts equivalent to 51% of intake compared to 59% after cessation of training. However, urinary excretion of three colonic catabolites of bacterial origin, most notably, 3-(3´-hydroxy-4´-methoxyphenyl)hydracrylic acid, did increase significantly when OJ was consumed post- compared to pre-cessation of training. Data were also obtained on inter-individual variations in flavanone bioavailability.
Conclusion: A 7-day cessation of endurance training enhanced, rather than reduced, the bioavailability of OJ flavanones. The biological significance of these differences and, whether or not they extend to the bioavailability of other dietary (poly)phenols, remains to be determined. Hesperetin-3´-O-glucuronide and the colonic microbiota-derived catabolite 3-(3´-hydroxy-4´-methoxyphenyl)hydracrylic acid are key biomarkers of the consumption of hesperetin-O-glycoside-containing OJ and other citrus products
Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: analysis by high-performance liquid chromatography–high-resolution mass spectrometry
Orange juice is a rich source of (poly)phenols, in particular, the flavanones hesperetin-7-O-rutinoside and naringenin-7-O-rutinoside. Following the acute consumption of 500 mL of orange juice containing 398 μmol of (poly)phenols by 12 volunteers, 0–24 h plasma and urine samples were analyzed by targeted high-performance liquid chromatography–high-resolution mass spectrometry in order to identify flavanone metabolites and phenolic acid and aromatic catabolites. A total of 19 flavanone metabolites—comprising di-O-glucuronide, O-glucuronide, O-glucuronyl-sulfate, and sulfate derivatives of hesperetin, naringenin, and eriodictyol—and 65 microbial-derived phenolic catabolites, such as phenylpropanoid, phenylpropionic, phenylacetic, benzoic, and hydroxycarboxylic acids and benzenetriol and benzoylglycine derivatives, including free phenolics and phase II sulfate, glucuronide, and methyl metabolites, were identified or partially identified in plasma and/or urine samples. The data obtained provide a detailed evaluation of the fate of orange juice (poly)phenols as they pass through the gastrointestinal tract and are absorbed into the circulatory system prior to renal excretion. Potential pathways for these conversions are proposed
The molecular basis of phosphite and hypophosphite recognition by ABC-transporters
Inorganic phosphate is the major bioavailable form of the essential nutrient phosphorus. However, the concentration of phosphate in most natural habitats is low enough to limit microbial growth. Under phosphate-depleted conditions some bacteria utilise phosphite and hypophosphite as alternative sources of phosphorus, but the molecular basis of reduced phosphorus acquisition from the environment is not fully understood. Here, we present crystal structures and ligand binding affinities of periplasmic binding proteins from bacterial phosphite and hypophosphite ATP-binding cassette transporters. We reveal that phosphite and hypophosphite specificity results from a combination of steric selection and the presence of a P-H…π interaction between the ligand and a conserved aromatic residue in the ligand-binding pocket. The characterisation of high affinity and specific transporters has implications for the marine phosphorus redox cycle, and might aid the use of phosphite as an alternative phosphorus source in biotechnological, industrial and agricultural applications
Unchaining digital responsibility from innovation in the world of metaverses: insights from the EU metaverse policy
A Sensemaking Approach to Europe\u27s Data Strategy
The use of data-driven tools provides a plethora of benefits and chal- lenges from a data policy-making perspective. This holds implications at organ- izational, national, and regional levels. At regional level the development of high- quality data-driven tools, among others, involve geo-political implications as they contribute to the region’s competitive advantage. In Europe, the European Commission has made attempts towards the formulation of a regional policy on data, aiming at fostering Europe’s global competitiveness and data sovereignty. Despite its geo-political impact, academic research on data strategy formulation at regional level remains scarce. While existing IS scholars have largely empha- sized on data strategies, the focus of these studies has been mainly at organiza- tional level. This paper motivates the need to go beyond data policies the organ- izational level and deepen our understanding on how data policies are formulated at regional level. Focusing on the case of the European regional area and the Eu- ropean Data Act formulation, the proposed research aims to shed light on how stakeholders make sense of the forthcoming data policy in Europe. The paper reflects on existing literature on data governance and availability and discusses its relevance to data policy formulation at regional level. It proposes sensemaking as a theoretical lens for this research and describes the methodology for the pro- posed research
Dynamics of extracellular superoxide production by Trichodesmium colonies from the Sargasso Sea
Author Posting. © Association for the Sciences of Limnology and Oceanography, 2016. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 61 (2016): 1188–1200, doi:10.1002/lno.10266.Reactive oxygen species (ROS) are key players in the health and biogeochemistry of the ocean and its inhabitants. The vital contribution of microorganisms to marine ROS levels, particularly superoxide, has only recently come to light, and thus the specific biological sources and pathways involved in ROS production are largely unknown. To better understand the biogenic controls on ROS levels in tropical oligotrophic systems, we determined rates of superoxide production under various conditions by natural populations of the nitrogen-fixing diazotroph Trichodesmium obtained from various surface waters in the Sargasso Sea. Trichodesmium colonies collected from eight different stations all produced extracellular superoxide at high rates in both the dark and light. Colony density and light had a variable impact on extracellular superoxide production depending on the morphology of the Trichodesmium colonies. Raft morphotypes showed a rapid increase in superoxide production in response to even low levels of light, which was not observed for puff colonies. In contrast, superoxide production rates per colony decreased with increasing colony density for puff morphotypes but not for rafts. These findings point to Trichodesmium as a likely key source of ROS to the surface oligotrophic ocean. The physiological and/or ecological factors underpinning morphology-dependent controls on superoxide production need to be unveiled to better understand and predict superoxide production by Trichodesmium and ROS dynamics within marine systems.Major support for this work was provided by NSF OCE-
1246174 to CMH, NSF OCE-1332912 to STD and NSF OCE-13329898
to BASVM
Quantifying integrated proteomic responses to iron stress in the globally important marine diazotroph trichodesmium
Trichodesmium is a biogeochemically important marine cyanobacterium, responsible for a significant proportion of the annual ‘new’ nitrogen introduced into the global ocean. These non-heterocystous filamentous diazotrophs employ a potentially unique strategy of near-concurrent nitrogen fixation and oxygenic photosynthesis, potentially burdening Trichodesmium with a particularly high iron requirement due to the iron-binding proteins involved in these processes. Iron availability may therefore have a significant influence on the biogeography of Trichodesmium. Previous investigations of molecular responses to iron stress in this keystone marine microbe have largely been targeted. Here a holistic approach was taken using a label-free quantitative proteomics technique (MSE) to reveal a sophisticated multi-faceted proteomic response of Trichodesmium erythraeum IMS101 to iron stress. Increased abundances of proteins known to be involved in acclimation to iron stress and proteins known or predicted to be involved in iron uptake were observed, alongside decreases in the abundances of iron-binding proteins involved in photosynthesis and nitrogen fixation. Preferential loss of proteins with a high iron content contributed to overall reductions of 55–60% in estimated proteomic iron requirements. Changes in the abundances of iron-binding proteins also suggested the potential importance of alternate photosynthetic pathways as Trichodesmium reallocates the limiting resource under iron stress. Trichodesmium therefore displays a significant and integrated proteomic response to iron availability that likely contributes to the ecological success of this species in the ocean
- …
