1,085 research outputs found

    Adaptive Finite Element Method for Simulation of Optical Nano Structures

    Full text link
    We discuss realization, properties and performance of the adaptive finite element approach to the design of nano-photonic components. Central issues are the construction of vectorial finite elements and the embedding of bounded components into the unbounded and possibly heterogeneous exterior. We apply the finite element method to the optimization of the design of a hollow core photonic crystal fiber. Thereby we look at the convergence of the method and discuss automatic and adaptive grid refinement and the performance of higher order elements

    Rigorous Simulations of 3D Patterns on Extreme Ultraviolet Lithography Masks

    Full text link
    Simulations of light scattering off an extreme ultraviolet lithography mask with a 2D-periodic absorber pattern are presented. In a detailed convergence study it is shown that accurate results can be attained for relatively large 3D computational domains and in the presence of sidewall-angles and corner-roundings.Comment: SPIE Europe Optical Metrology, Conference Proceeding

    Analytical modeling and 3D finite element simulation of line edge roughness in scatterometry

    Full text link
    The influence of edge roughness in angle resolved scatterometry at periodically structured surfaces is investigated. A good description of the radiation interaction with structured surfaces is crucial for the understanding of optical imaging processes like, e.g. in photolithography. We compared an analytical 2D model and a numerical 3D simulation with respect to the characterization of 2D diffraction of a line grating involving structure roughness. The results show a remarkably high agreement. The diffraction intensities of a rough structure can therefore be estimated using the numerical simulation result of an undisturbed structure and an analytically derived correction function. This work allows to improve scatterometric results for the case of practically relevant 2D structures

    hp-finite element method for simulating light scattering from complex 3D structures

    Full text link
    Methods for solving Maxwell's equations are integral part of optical metrology and computational lithography setups. Applications require accurate geometrical resolution, high numerical accuracy and/or low computation times. We present a finite-element based electromagnetic field solver relying on unstructured 3D meshes and adaptive hp-refinement. We apply the method for simulating light scattering off arrays of high aspect-ratio nano-posts and FinFETs

    Finite Element simulation of radiation losses in photonic crystal fibers

    Full text link
    In our work we focus on the accurate computation of light propagation in finite size photonic crystal structures with the finite element method (FEM). We discuss how we utilize numerical concepts like high-order finite elements, transparent boundary conditions and goal-oriented error estimators for adaptive grid refinement in order to compute radiation leakage in photonic crystal fibers and waveguides. Due to the fast convergence of our method we can use it e.g. to optimize the design of photonic crystal structures with respect to geometrical parameters, to minimize radiation losses and to compute attenutation spectra for different geometries

    Time-optimal polarization transfer from an electron spin to a nuclear spin

    Full text link
    Polarization transfers from an electron spin to a nuclear spin are essential for various physical tasks, such as dynamic nuclear polarization in nuclear magnetic resonance and quantum state transformations on hybrid electron-nuclear spin systems. We present time-optimal schemes for electron-nuclear polarization transfers which improve on conventional approaches and will have wide applications.Comment: 11 pages, 8 figure

    Reduced basis method for computational lithography

    Full text link
    A bottleneck for computational lithography and optical metrology are long computational times for near field simulations. For design, optimization, and inverse scatterometry usually the same basic layout has to be simulated multiple times for different values of geometrical parameters. The reduced basis method allows to split up the solution process of a parameterized model into an expensive offline and a cheap online part. After constructing the reduced basis offline, the reduced model can be solved online very fast in the order of seconds or below. Error estimators assure the reliability of the reduced basis solution and are used for self adaptive construction of the reduced system. We explain the idea of reduced basis and use the finite element solver JCMsuite constructing the reduced basis system. We present a 3D optimization application from optical proximity correction (OPC).Comment: BACUS Photomask Technology 200

    Metrology of EUV Masks by EUV-Scatterometry and Finite Element Analysis

    Full text link
    Extreme ultraviolet (EUV) lithography is seen as a main candidate for production of future generation computer technology. Due to the short wavelength of EUV light (around 13 nm) novel reflective masks have to be used in the production process. A prerequisite to meet the high quality requirements for these EUV masks is a simple and accurate method for absorber pattern profile characterization. In our previous work we demonstrated that the Finite Element Method (FEM) is very well suited for the simulation of EUV scatterometry and can be used to reconstruct EUV mask profiles from experimental scatterometric data. In this contribution we apply an indirect metrology method to periodic EUV line masks with different critical dimensions (140 nm and 540 nm) over a large range of duty cycles (1:2, ..., 1:20). We quantitatively compare the reconstructed absorber pattern parameters to values obtained from direct AFM and CD-SEM measurements. We analyze the reliability of the reconstruction for the given experimental data. For the CD of the absorber lines, the comparison shows agreement of the order of 1nm. Furthermore we discuss special numerical techniques like domain decomposition algorithms and high order finite elements and their importance for fast and accurate solution of the inverse problem.Comment: Photomask Japan 2008 / Photomask and Next-Generation Lithography Mask Technology X

    Stability and structure of 5-telluro-2'-deoxyuridine and 5-telluro-2'-deoxyuridine-3',5'-biphosphate cations

    Get PDF
    The stability and structure of 5-telluro-2 '-deoxyuridine and 5-telluro-2 '-deoxyuridine-3 ',5 '-biphosphate cations was investigated by density functional theory calculations. With regard to a conceivable Coulomb explosion within the DNA strand after the decay of DNA-incorporated I-125 or I-123, the phosphate groups in 5-telluro-2 '-deoxyuridine-3 ',5 '-biphosphate have a strongly stabilizing effect on the DNA component. (C) 2010 Elsevier B.V. All rights reserved
    corecore