332 research outputs found
Recommended from our members
Aerodynamics of the Cupped Wings during Peregrine Falcon’s Diving Flight
During a dive peregrine falcons can reach velocities of more than 320 km/h and makes themselves the fastest animals in the world. The aerodynamic mechanisms involved are not fully understood yet and the search for a conclusive answer to this fact motivates the three-dimensional (3-D) flow study. Especially the cupped wing configuration which is a unique feature of the wing shape in falcon peregrine dive is our focus herein. In particular, the flow in the gap between the main body and the cupped wing is studied to understand how this flow interacts with the body and to what extend it affects the integral forces of lift and drag. Characteristic shapes of the wings while divingare studied with regard to their aerodynamics using computational fluid dynamics (CFD). The results of the numerical simulations via ICEM CFD and OpenFOAM show predominant flow structures around the body surface and in the wake of the falcon model such as a pair of body vortices and tip vortices. The drag for the cupped wing profile is reduced in relation to the configuration of opened wings (without cupped-like profile) while lift is increased. The purpose of this study is primarily the basic research of the aerodynamic mechanisms during the falcon’s diving flight. The results could be important for maintaining good maneuverability at high speeds in the aviation sector
Recommended from our members
Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus)
This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred
Recommended from our members
Vortices enable the complex aerobatics of peregrine falcons
The peregrine falcon (Falco peregrinus) is known for its extremely high speeds during hunting dives or stoop. Here we demonstrate that the superior manoeuvrability of peregrine falcons during stoop is attributed to vortex-dominated flow promoted by their morphology, in the M-shape configuration adopted towards the end of dive. Both experiments and simulations on life-size models, derived from field observations, revealed the presence of vortices emanating from the frontal and dorsal region due to a strong spanwise flow promoted by the forward sweep of the radiale. These vortices enhance mixing for flow reattachment towards the tail. The stronger wing and tail vortices provide extra aerodynamic forces through vortex-induced lift for pitch and roll control. A vortex pair with a sense of rotation opposite to that from conventional planar wings interacts with the main wings vortex to reduce induced drag, which would otherwise decelerate the bird significantly during pull-out. These findings could help in improving aircraft performance and wing suits for human flights
Passage of orally administered tetracycline into the gingival crevice around natural teeth and around protruding subperiosteal implant abutments in man
Thesis (M.Sc.D.)--Boston University. School of Graduate Dentistry, 1969. (Prosthetics)Bibliography, colored photographs included
Some New Measurements and Renormalizations of Neutron Capture Cross Section Data in the keV Energy Range. EUR 3679.
Testing for an effect of a mindfulness induction on child executive functions
Several sessions of mindfulness practice can exert positive gains for child executive functions (EF); however, the evidence for effects of a mindfulness induction, on EF for adults, is mixed and this effect has not been tested in children. The immediate effect of an age appropriate 3-min mindfulness induction on EF of children aged 4–7 years was tested. Participants (N = 156) were randomly assigned to a mindfulness induction or dot-to-dot activity comparison group before completing four measures of EF. A composite score for EF was calculated from summed z scores of the four EF measures. A difference at baseline in behavioural difficulties between the mindfulness induction and comparison group meant that data was analysed using a hierarchical regression. The mindfulness induction resulted in higher average performance for the composite EF score (M = 0.12) compared to the comparison group (M = − 0.05). Behavioural difficulties significantly predicted 5.3% of the variance in EF performance but participation in the mindfulness or comparison induction did not significantly affect EF. The non-significant effect of a mindfulness induction to exert immediate effects on EF fits within broader evidence reporting mixed effects when similar experimental designs have been used with adults. The findings are discussed with consideration of the extent to which methodological differences may account for these mixed effects and how mindfulness inductions fit within broader theoretical and empirical understanding of the effects of mindfulness on EF
A field method for the cephalometric x-ray study of skulls in early Nubian cemeteries
The cephalometer, a clinical and research instrument employed by the orthodontic profession to record standardized x-rays of the human skull, has been modified for research work in remote areas where the usual laboratory facilities are not available. This cephalometer was specifically designed to record cephalograms (head radiographs) on the living Nubian population and their extensive skeletal record. The cephalometer consists of a light, portable tripod stand and an aluminum beam to which is attached at one end a Wehmer cephalostat (head holder), and on the other end an isotope radiation source. Hence, the radiation source and the cephalostat were held in the standard relationship of five feet from source to the mid-saggittal plane of the cranium. Ytterbium-169, with a half life of 32.5 days, was used to expose the film. The isotope and the use of the new Experimental Polaroid X-ray Film permitted the x-ray examination of Nubian skulls with no conventional power source or darkroom facilities.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37476/1/1330240217_ftp.pd
- …
