84 research outputs found

    Interactions of IgG1 CH2 and CH3 Domains with FcRn

    Get PDF
    Antibody fragments are emerging as promising biopharmaceuticals because of their relatively small size and other unique properties. However, when compared to full-size antibodies, most of the current antibody fragments of VH or VL display greatly reduced half-lives. A promising approach to overcome this problem is through the development of novel antibody fragments based on IgG Fc region, which contributes to the long half-life of IgG through its unique pH-dependent association with the neonatal Fc receptor (FcRn). The IgG Fc region comprises two CH2 and two CH3 domains. In this report, we present a comparative study of the FcRn binding capability of the CH2 and CH3 domains. The stability and aggregation resistance of these domains were also investigated and compared. We found that monomeric CH2 and CH3 domains exhibited the pH-dependent FcRn binding while the dimeric forms of CH2 and CH3 domains did not. Although all of these domains had high serum stability, they had aggregation tendencies as measured by dynamic light scattering. By providing a better understanding of the structure-activity relationship of the Fc fragment, these results guide further approaches to generate novel Fc-based small-size antibody fragments that possess pH-dependent FcRn binding capability, desired in vivo half-lives and other favorable biophysical properties for their drugability

    The SARS Coronavirus S Glycoprotein Receptor Binding Domain: Fine Mapping and Functional Characterization

    Get PDF
    The entry of the SARS coronavirus (SCV) into cells is initiated by binding of its spike envelope glycoprotein (S) to a receptor, ACE2. We and others identified the receptor-binding domain (RBD) by using S fragments of various lengths but all including the amino acid residue 318 and two other potential glycosylation sites. To further characterize the role of glycosylation and identify residues important for its function as an interacting partner of ACE2, we have cloned, expressed and characterized various soluble fragments of S containing RBD, and mutated all potential glycosylation sites and 32 other residues. The shortest of these fragments still able to bind the receptor ACE2 did not include residue 318 (which is a potential glycosylation site), but started at residue 319, and has only two potential glycosylation sites (residues 330 and 357). Mutation of each of these sites to either alanine or glutamine, as well as mutation of residue 318 to alanine in longer fragments resulted in the same decrease of molecular weight (by approximately 3 kDa) suggesting that all glycosylation sites are functional. Simultaneous mutation of all glycosylation sites resulted in lack of expression suggesting that at least one glycosylation site (any of the three) is required for expression. Glycosylation did not affect binding to ACE2. Alanine scanning mutagenesis of the fragment S319–518 resulted in the identification of ten residues (K390, R426, D429, T431, I455, N473, F483, Q492, Y494, R495) that significantly reduced binding to ACE2, and one residue (D393) that appears to increase binding. Mutation of residue T431 reduced binding by about 2-fold, and mutation of the other eight residues – by more than 10-fold. Analysis of these data and the mapping of these mutations on the recently determined crystal structure of a fragment containing the RBD complexed to ACE2 (Li, F, Li, W, Farzan, M, and Harrison, S. C., submitted) suggested the existence of two hot spots on the S RBD surface, R426 and N473, which are likely to contribute significant portion of the binding energy. The finding that most of the mutations (23 out of 34 including glycosylation sites) do not affect the RBD binding function indicates possible mechanisms for evasion of immune responses

    454 antibody sequencing - error characterization and correction

    Get PDF
    BACKGROUND: 454 sequencing is currently the method of choice for sequencing of antibody repertoires and libraries containing large numbers (10(6 )to 10(12)) of different molecules with similar frameworks and variable regions which poses significant challenges for identifying sequencing errors. Identification and correction of sequencing errors in such mixtures is especially important for the exploration of complex maturation pathways and identification of putative germline predecessors of highly somatically mutated antibodies. To quantify and correct errors incorporated in 454 antibody sequencing, we sequenced six antibodies at different known concentrations twice over and compared them with the corresponding known sequences as determined by standard Sanger sequencing. RESULTS: We found that 454 antibody sequencing could lead to approximately 20% incorrect reads due to insertions that were mostly found at shorter homopolymer regions of 2-3 nucleotide length, and less so by insertions, deletions and other variants at random sites. Correction of errors might reduce this population of erroneous reads down to 5-10%. However, there are a certain number of errors accounting for 4-8% of the total reads that could not be corrected unless several repeated sequencing is performed, although this may not be possible for large diverse libraries and repertoires including complete sets of antibodies (antibodyomes). CONCLUSIONS: The experimental test procedure carried out for assessing 454 antibody sequencing errors reveals high (up to 20%) incorrect reads; the errors can be reduced down to 5-10% but not less which suggests the use of caution to avoid false discovery of antibody variants and diversity

    Structure of an isolated unglycosylated antibody CH2 domain

    Get PDF
    The crystal structure of an isolated unglycosylated antibody CH2 domain has been determined at 1.7 Å resolution

    Next-generation sequencing may challenge antibody patent claims

    Full text link

    Comment on μ<sub>1,3</sub>-azido-diazidotetrakis(1,10-phenanthroline)dicopper(II) azide tetrahydrate

    Full text link

    Human Antibody Structure and Function

    Full text link
    corecore