156 research outputs found
Flat branches and pressure amorphization
After summarizing the phenomenology of pressure amorphization (PA), we
present a theory of PA based on the notion that one or more branches of the
phonon spectrum soften and flatten with increasing pressure. The theory
expresses the anharmonic dynamics of the flat branches in terms of local modes,
represented by lattice Wannier functions, which are in turn used to construct
an effective Hamiltonian. When the low-pressure structure becomes metastable
with respect to the high-pressure equilibrium phase and the relevant branches
are sufficiently flat, transformation into an amorphous phase is shown to be
kinetically favored because of the exponentially large number of both amorphous
phases and reaction pathways. In effect, the critical-size nucleus for the
first-order phase transition is found to be reduced to a single unit cell, or
nearly so. Random nucleation into symmetrically equivalent local configurations
characteristic of the high-pressure structure is then shown to overwhelm any
possible domain growth, and an ``amorphous'' structure results.Comment: 8 pages with 3 postscript figures embedded; Proceedings of the 4th
International Discussion Meeting on Relaxations in Complex Systems,
Hersonissos, Heraklion, Crete, June 16-23, ed. K. L. Ngai, Special Issues of
the Journal of Non-Crystalline Solids, 200
Physics of the liquid-liquid critical point
Within the inherent structure (IS) thermodynamic formalism introduced by
Stillinger and Weber [F. H. Stillinger and T. A. Weber, Phys. Rev. A {\bf 25},
978 (1982)] we address the basic question of the physics of the liquid-liquid
transition and of density maxima observed in some complex liquids such as water
by identifying, for the first time, the statistical properties of the potential
energy landscape (PEL) responsible for these anomalies.
We also provide evidence of the connection between density anomalies and the
liquid-liquid critical point. Within the simple (and physically transparent)
model discussed, density anomalies do imply the existence of a liquid-liquid
transition.Comment: Physical Review Letters, in publicatio
Mechanical versus thermodynamical melting in pressure-induced amorphization: the role of defects
We study numerically an atomistic model which is shown to exhibit a one--step
crystal--to--amorphous transition upon decompression. The amorphous phase
cannot be distinguished from the one obtained by quenching from the melt. For a
perfectly crystalline starting sample, the transition occurs at a pressure at
which a shear phonon mode destabilizes, and triggers a cascade process leading
to the amorphous state. When defects are present, the nucleation barrier is
greatly reduced and the transformation occurs very close to the extrapolation
of the melting line to low temperatures. In this last case, the transition is
not anticipated by the softening of any phonon mode. Our observations reconcile
different claims in the literature about the underlying mechanism of pressure
amorphization.Comment: 7 pages, 7 figure
Polymorphism, thermodynamic anomalies and network formation in an atomistic model with two internal states
Using molecular dynamics simulations we study the temperature-density phase
diagram of a simple model system of particles in two dimensions. In addition to
translational degrees of freedom, each particle has two internal states and
interacts with a modified Lennard-Jones potential which depends on relative
positions as well as the internal states. We find that, despite its simplicity,
the model has a rich phase diagram showing many features of common
network-forming liquids such as water and silica, including polymorphism and
thermodynamic anomalies. We believe our model may be useful for studies
concerning generic features of such complex liquids.Comment: 7 pages, 8 pdf figure
Entropy-driven liquid-liquid separation in supercooled water
Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the
anomalous properties of supercooled water may be caused by a critical point
that terminates a line of liquid-liquid separation of lower-density and
higher-density water. Here we present an explicit thermodynamic model based on
this hypothesis, which describes all available experimental data for
supercooled water with better quality and with fewer adjustable parameters than
any other model suggested so far. Liquid water at low temperatures is viewed as
an 'athermal solution' of two molecular structures with different entropies and
densities. Alternatively to popular models for water, in which the
liquid-liquid separation is driven by energy, the phase separation in the
athermal two-state water is driven by entropy upon increasing the pressure,
while the critical temperature is defined by the 'reaction' equilibrium
constant. In particular, the model predicts the location of density maxima at
the locus of a near-constant fraction (about 0.12) of the lower-density
structure.Comment: 7 pages, 6 figures. Version 2 contains an additional supplement with
tables for the mean-field equatio
Neutron scattering studies of the structure and lattice dynamics of a solid solution of hydrogen in -manganese
ChemInform Abstract: Stability and Instability of Crystalline and Amorphous Phases at High Pressure
- …
