5 research outputs found
A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets
ABSTRACTThe CRISPR/Cas9 nuclease fromStreptococcus pyogenes(SpCas9) can be used with single guide RNAs (sgRNAs) as a sequence-specific antimicrobial agent and as a genome-engineering tool. However, current bacterial sgRNA activity models poorly predict SpCas9/sgRNA activity and are not generalizable, possibly because the underlying datasets used to train the models do not accurately measure SpCas9/sgRNA cleavage activity and cannot distinguish cleavage activity from toxicity. We solved this problem by using a two-plasmid positive selection system to generate high-quality biologically-relevant data that more accurately reports on SpCas9/sgRNA cleavage activity and that separates activity from toxicity. We developed a new machine transfer learning architecture (crisprHAL) that can be trained on existing datasets and that shows marked improvements in sgRNA activity prediction accuracy when transfer learning is used with small amounts of high-quality data. The crisprHAL model recapitulates known SpCas9/sgRNA-target DNA interactions and provides a pathway to a generalizable sgRNA bacterial activity prediction tool.</jats:p
P477: Barriers and facilitators to implementing genomic medicine: A scoping review of the global landscape*
A generalizable Cas9/sgRNA prediction model using machine transfer learning with small high-quality datasets
Abstract The CRISPR/Cas9 nuclease from Streptococcus pyogenes (SpCas9) can be used with single guide RNAs (sgRNAs) as a sequence-specific antimicrobial agent and as a genome-engineering tool. However, current bacterial sgRNA activity models struggle with accurate predictions and do not generalize well, possibly because the underlying datasets used to train the models do not accurately measure SpCas9/sgRNA activity and cannot distinguish on-target cleavage from toxicity. Here, we solve this problem by using a two-plasmid positive selection system to generate high-quality data that more accurately reports on SpCas9/sgRNA cleavage and that separates activity from toxicity. We develop a machine learning architecture (crisprHAL) that can be trained on existing datasets, that shows marked improvements in sgRNA activity prediction accuracy when transfer learning is used with small amounts of high-quality data, and that can generalize predictions to different bacteria. The crisprHAL model recapitulates known SpCas9/sgRNA-target DNA interactions and provides a pathway to a generalizable sgRNA bacterial activity prediction tool that will enable accurate antimicrobial and genome engineering applications
