579 research outputs found
Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites
Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur
Environmental, maternal, and reproductive risk factors for childhood acute lymphoblastic leukemia in Egypt : a case-control study
BACKGROUND\ud
Acute lymphocytic leukemia (ALL) is the most common pediatric cancer. The exact cause is not known in most cases, but past epidemiological research has suggested a number of potential risk factors. This study evaluated associations between environmental and parental factors and the risk for ALL in Egyptian children to gain insight into risk factors in this developing country.\ud
METHODS\ud
We conducted a case-control design from May 2009 to February 2012. Cases were recruited from Children's Cancer Hospital, Egypt (CCHE). Healthy controls were randomly selected from the general population to frequency-match the cumulative group of cases by sex, age groups (<1; 1 - 5; >5 - 10; >10 years) and region of residence (Cairo metropolitan region, Nile Delta region (North), and Upper Egypt (South)). Mothers provided answers to an administered questionnaire about their environmental exposures and health history including those of the father. Odds ratios (ORs) and 95 % confidence intervals (CI) were calculated using logistic regression with adjustment for covariates.\ud
RESULTS\ud
Two hundred ninety-nine ALL cases and 351 population-based controls frequency-matched for age group, gender and location were recruited. The risk of ALL was increased with the mother's use of medications for ovulation induction (ORadj = 2.5, 95 % CI =1.2 -5.1) and to a lesser extend with her age (ORadj = 1.8, 95 % CI = 1.1 - 2.8, for mothers ≥ 30 years old). Delivering the child by Cesarean section, was also associated with increased risk (ORadj = 2.01, 95 % CI =1.24-2.81).\ud
CONCLUSIONS\ud
In Egypt, the risk for childhood ALL appears to be associated with older maternal age, and certain maternal reproductive factors
Genetic improvement of tomato by targeted control of fruit softening
Controlling the rate of softening to extend shelf life was a key target for researchers engineering genetically modified (GM) tomatoes in the 1990s, but only modest improvements were achieved. Hybrids grown nowadays contain 'non-ripening mutations' that slow ripening and improve shelf life, but adversely affect flavor and color. We report substantial, targeted control of tomato softening, without affecting other aspects of ripening, by silencing a gene encoding a pectate lyase
Mathematical Modeling of the Role of Mitochondrial Fusion and Fission in Mitochondrial DNA Maintenance
10.1371/journal.pone.0076230PLOS ONE8101-1
Self domestication and the evolution of language
We set out an account of how self-domestication plays a crucial role in the evolution of language. In doing so, we focus on the growing body of work that treats language structure as emerging from the process ofcultural transmission. We argue that a full recognition of the importance of cultural transmission fundamentally changes the kind ofquestionswe should be asking regarding the biological basis of language structure. If we think of language structure as reflecting an accumulated set of changes in our genome, then we might ask something like, "What are the genetic bases of language structure and why were they selected?" However, if cultural evolution can account for language structure, then this question no longer applies. Instead, we face the task of accounting for the origin of the traits that enabled that process of structure-creating cultural evolution to get started in the first place. In light of work on cultural evolution, then, the new question for biological evolution becomes, "How did those precursor traits evolve?" We identify two key precursor traits: (1) the transmission of the communication system throughlearning; and (2) the ability to infer thecommunicative intentassociated with a signal or action. We then describe two comparative case studies-the Bengalese finch and the domestic dog-in which parallel traits can be seen emerging followingdomestication. Finally, we turn to the role of domestication in human evolution. We argue that the cultural evolution of language structure has its origin in an earlier process of self-domestication.</p
Multisystem mitochondrial disease caused by a rare m.10038G>A mitochondrial tRNAGly (MT-TG) variant
Most pathogenic mitochondrial DNA (mtDNA) variants occur in the 22 mtDNA-encoded tRNA (mt-tRNA) genes. However, despite more than 270 reported mt-tRNA gene mutations, only 5 reside within mt-tRNAGly (MT-TG). We report a rare MT-TG variant and evaluate this, in addition to all previously reported MT-TG variants, against the published criteria used to help determine the pathogenicity of the mt-tRNA variants
Loss and dispersion of superficial white matter in Alzheimer's disease: a diffusion MRI study
Pathological cerebral white matter changes in Alzheimer’s disease have been shown using diffusion tensor imaging. Superficial white matter changes are relatively understudied despite their importance in cortico-cortical connections. Measuring superficial white matter degeneration using diffusion tensor imaging is challenging due to its complex organizational structure and proximity to the cortex. To overcome this, we investigated diffusion MRI changes in young-onset Alzheimer’s disease using standard diffusion tensor imaging and Neurite Orientation Dispersion and Density Imaging to distinguish between disease-related changes that are degenerative (e.g. loss of myelinated fibres) and organizational (e.g. increased fibre dispersion). Twenty-nine young-onset Alzheimer’s disease patients and 22 healthy controls had both single-shell and multi-shell diffusion MRI. We calculated fractional anisotropy, mean diffusivity, neurite density index, orientation dispersion index and tissue fraction (1-free water fraction). Diffusion metrics were sampled in 15 a priori regions of interest at four points along the cortical profile: cortical grey matter, grey/white boundary, superficial white matter (1 mm below grey/white boundary) and superficial/deeper white matter (2 mm below grey/white boundary). To estimate cross-sectional group differences, we used average marginal effects from linear mixed effect models of participants’ diffusion metrics along the cortical profile. The superficial white matter of young-onset Alzheimer’s disease individuals had lower neurite density index compared to controls in five regions (superior and inferior parietal, precuneus, entorhinal and parahippocampus) (all P < 0.05), and higher orientation dispersion index in three regions (fusiform, entorhinal and parahippocampus) (all P < 0.05). Young-onset Alzheimer’s disease individuals had lower fractional anisotropy in the entorhinal and parahippocampus regions (both P < 0.05) and higher fractional anisotropy within the postcentral region (P < 0.05). Mean diffusivity was higher in the young-onset Alzheimer’s disease group in the parahippocampal region (P < 0.05) and lower in the postcentral, precentral and superior temporal regions (all P < 0.05). In the overlying grey matter, disease-related changes were largely consistent with superficial white matter findings when using neurite density index and fractional anisotropy, but appeared at odds with orientation dispersion and mean diffusivity. Tissue fraction was significantly lower across all grey matter regions in young-onset Alzheimer’s disease individuals (all P < 0.001) but group differences reduced in magnitude and coverage when moving towards the superficial white matter. These results show that microstructural changes occur within superficial white matter and along the cortical profile in individuals with young-onset Alzheimer’s disease. Lower neurite density and higher orientation dispersion suggests underlying fibres undergo neurodegeneration and organizational changes, two effects previously indiscernible using standard diffusion tensor metrics in superficial white matter
Multisystem mitochondrial disease caused by a rare m.10038G>A mitochondrial tRNA Gly ( MT-TG ) variant
Most pathogenic mitochondrial DNA (mtDNA) variants occur in the 22 mtDNA-encoded tRNA (mt-tRNA) genes. However, despite more than 270 reported mt-tRNA gene mutations, only 5 reside within mt-tRNAGly (MT-TG).1 We report a rare MT-TG variant and evaluate this, in addition to all previously reported MT-TG variants, against the published criteria used to help determine the pathogenicity of the mt-tRNA variants.
A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus
The bacterium Myxococcus xanthus glides through soil in search of prey microbes, but when food
sources run out, cells cooperatively construct and sporulate within multicellular fruiting bodies.
M. xanthus strains isolated from a 16 × 16-cm-scale patch of soil were previously shown to have
diversified into many distinct compatibility types that are distinguished by the failure of swarming
colonies to merge upon encounter. We sequenced the genomes of 22 isolates from this population
belonging to the two most frequently occurring multilocus sequence type (MLST) clades to trace
patterns of incipient genomic divergence, specifically related to social divergence. Although
homologous recombination occurs frequently within the two MLST clades, we find an almost
complete absence of recombination events between them. As the two clades are very closely related
and live in sympatry, either ecological or genetic barriers must reduce genetic exchange between
them. We find that the rate of change in the accessory genome is greater than the rate of amino-acid
substitution in the core genome. We identify a large genomic tract that consistently differs between
isolates that do not freely merge and therefore is a candidate region for harbouring gene(s)
responsible for self/non-self discrimination
Recommended from our members
Regulation of early steps of GPVI signal transduction by phosphatases: a systems biology approach
We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate, and therefore extent, of GPVI-stimulated platelet activation
- …
