7,230 research outputs found
Catch Shares in Action: United States Mid-Atlantic Golden Tilefish Individual Fishing Quota Program
Established in 2009, the United States Mid-Atlantic Golden Tilefish Individual Fishing Quota (IFQ) Program is a catch share program that has minimized the complexity of fishery management to create a usable, efficient system for fishermen and fishery managers. The program was implemented following the innovative self-organization of some fishery participants into an IFQ-like cooperative, which demonstrated the potential benefits of an IFQ. The goals of the IFQ program were focused on rebuilding the tilefish stock through overcapacity reduction and elimination of problems associated with derby-style fishing. Key design features include a discard prohibition and incidental tilefish catch limit for non-IFQ vessels to ensure all sources of tilefish fishing mortality are accounted for
HISTORICAL FLOWS OF CORN, WHEAT AND SOYBEANS FROM MINNESOTA, NORTH DAKOTA AND SOUTH DAKOTA
Marketing,
Crystallization of hard-sphere glasses
We study by molecular dynamics the interplay between arrest and
crystallization in hard spheres. For state points in the plane of volume
fraction () and polydispersity (), we delineate states that spontaneously crystallize from those that do
not. For noncrystallizing (or precrystallization) samples we find
isodiffusivity lines consistent with an ideal glass transition at , independent of . Despite this, for , crystallization
occurs at . This happens on time scales for which the system is
aging, and a diffusive regime in the mean square displacement is not reached;
by those criteria, the system is a glass. Hence, contrary to a widespread
assumption in the colloid literature, the occurrence of spontaneous
crystallization within a bulk amorphous state does not prove that this state
was an ergodic fluid rather than a glass.Comment: 4 pages, 3 figure
Fracture through cavitation in a metallic glass
The fracture surfaces of a Zr-based bulk metallic glass exhibit exotic multi-affine isotropic scaling properties. The study of the mismatch between the two facing fracture surfaces as a function of their distance shows that fracture occurs mostly through the growth and coalescence of damage cavities. The fractal nature of these damage cavities is shown to control the roughness of the fracture surfaces
Shear banding and flow-concentration coupling in colloidal glasses
We report experiments on hard sphere colloidal glasses that reveal a type of
shear banding hitherto unobserved in soft glasses. We present a scenario that
relates this to an instability arising from shear-concentration coupling, a
mechanism previously thought unimportant in this class of materials. Below a
characteristic shear rate we observe increasingly non-linear
velocity profiles and strongly localized flows. We attribute this trend to very
slight concentration gradients (likely to evade direct detection) arising in
the unstable flow regime. A simple model accounts for both the observed
increase of with concentration, and the fluctuations observed in
the flow.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let
Role of Metastable States in Phase Ordering Dynamics
We show that the rate of separation of two phases of different densities
(e.g. gas and solid) can be radically altered by the presence of a metastable
intermediate phase (e.g. liquid). Within a Cahn-Hilliard theory we study the
growth in one dimension of a solid droplet from a supersaturated gas. A moving
interface between solid and gas phases (say) can, for sufficient (transient)
supersaturation, unbind into two interfaces separated by a slab of metastable
liquid phase. We investigate the criteria for unbinding, and show that it may
strongly impede the growth of the solid phase.Comment: 4 pages, Latex, Revtex, epsf. Updated two reference
Triaxial Black-Hole Nuclei
We demonstrate that the nuclei of galaxies containing supermassive black
holes can be triaxial in shape. Schwarzschild's method was first used to
construct self-consistent orbital superpositions representing nuclei with axis
ratios of 1:0.79:0.5 and containing a central point mass representing a black
hole. Two different density laws were considered, with power-law slopes of -1
and -2. We constructed two solutions for each power law: one containing only
regular orbits and the other containing both regular and chaotic orbits.
Monte-Carlo realizations of the models were then advanced in time using an
N-body code to verify their stability. All four models were found to retain
their triaxial shapes for many crossing times. The possibility that galactic
nuclei may be triaxial complicates the interpretation of stellar-kinematical
data from the centers of galaxies and may alter the inferred interaction rates
between stars and supermassive black holes.Comment: 4 pages, 4 postscript figures, uses emulateapj.st
Deviation from Snell's Law for Beams Transmitted Near the Critical Angle: Application to Microcavity Lasers
We show that when a narrow beam is incident upon a dielectric interface near
the critical angle for total internal reflection it will be transmitted into
the far-field with an angular deflection from the direction predicted by
Snell's Law, due to a phenomenon we call "Fresnel Filtering". This effect can
be quite large for the parameter range relevant to dielectric microcavity
lasers.Comment: 4 pages, 3 figures (eps), RevTeX 3.1, to be published in Optics
Letter
Glasses in hard spheres with short-range attraction
We report a detailed experimental study of the structure and dynamics of
glassy states in hard spheres with short-range attraction. The system is a
suspension of nearly-hard-sphere colloidal particles and non-adsorbing linear
polymer which induces a depletion attraction between the particles. Observation
of crystallization reveals a re-entrant glass transition. Static light
scattering shows a continuous change in the static structure factors upon
increasing attraction. Dynamic light scattering results, which cover 11 orders
of magnitude in time, are consistent with the existence of two distinct kinds
of glasses, those dominated by inter-particle repulsion and caging, and those
dominated by attraction. Samples close to the `A3 point' predicted by mode
coupling theory for such systems show very slow, logarithmic dynamics.Comment: 22 pages, 18 figure
- …
