1,220 research outputs found

    Diffuse neutral hydrogen in the HI Parkes All Sky Survey

    Get PDF
    Observations of neutral hydrogen can provide a wealth of information about the distribution and kinematics of galaxies. To detect HI beyond the ionisation edge of galaxy disks, column density sensitivities have to be achieved that probe the regime of Lyman limit systems. Typically HI observations are limited to a brightness sensitivity of NHI~10^19 cm-2 but this has to be improved by at least an order of magnitude. In this paper, reprocessed data is presented that was originally observed for the HI Parkes All Sky Survey (HIPASS). HIPASS provides complete coverage of the region that has been observed for the Westerbork Virgo Filament HI Survey (WVFS), presented in accompanying papers, and thus is an excellent product for data comparison. The region of interest extends from 8 to 17 hours in right ascension and from -1 to 10 degrees in declination. Although the original HIPASS product already has good flux sensitivity, the sensitivity and noise characteristics can be significantly improved with a different processing method. The newly processed data has an 1sigma RMS flux sensitivity of ~10 mJy beam-1 over 26 km s-1, corresponding to a column density sensitivity of ~3\cdot10^17 cm-2. While the RMS sensitivity is improved by only a modest 20%, the more substantial benefit is in the reduction of spectral artefacts near bright sources by more than an order of magnitude. In the reprocessed region we confirm all previously catalogued HIPASS sources and have identified 29 additional sources of which 14 are completely new HI detections. Extended emission or companions were sought in the nearby environment of each discrete detection. With the improved sensitivity after reprocessing and its large sky coverage, the HIPASS data is a valuable resource for detection of faint HI emission.(Abridged)Comment: 22 pages plus appendix, 6 figures, appendix will only appear in online format. Accepted for publication in A&

    The ESO UVES Advanced Data Products Quasar Sample - I. Dataset and New N_HI Measurements of Damped Absorbers

    Full text link
    We present here a dataset of quasars observed with the Ultraviolet Visual Echelle Spectrograph (UVES) on the VLT and available in the ESO UVES Advanced Data Products archive. The sample is made up of a total of 250 high resolution quasar spectra with emission redshifts ranging from 0.191 < z_em <6.311. The total UVES exposure time of this dataset is 1560 hours. Thanks to the high resolution of UVES spectra, it is possible to unambiguously measure the column density of absorbers with damping wings, down to N_HI > 10^{19} cm^{-2}, which constitutes the sub-damped Lya absorber (sub-DLA) threshold. Within the wavelength coverage of our UVES data, we find 150 damped Lya systems (DLAs)/sub-DLAs in the range 1.5 < z_abs < 4.7. Of these 150, 93 are DLAs and 57 are sub-DLAs. An extensive search in the literature indicates that 6 of these DLAs and 13 of these sub-DLAs have their N_HI measured for the first time. Among them, 10 are new identifications as DLAs/sub-DLAs. For each of these systems, we obtain an accurate measurement of the HI column density and the absorber's redshift in the range 1.7 < z_abs < 4.2 by implementing a Voigt profile-fitting algorithm. These absorbers are further confirmed thanks to the detection of associated metal lines and/or lines from members of the Lyman series. In our data, a few quasars' lines-of-sight are rich. An interesting example is towards QSO J0133+0400 (z_em = 4.154) with six DLAs and sub-DLAs reported.Comment: 16 pages, 24 figures, 3 table

    Dissecting the IRX - β\beta dust attenuation relation: exploring the physical origin of observed variations in galaxies

    Full text link
    The use of ultraviolet (UV) emission as a tracer of galaxy star-formation rate (SFR) is hampered by dust obscuration. The empirical relationship between UV slope, β\beta, and the ratio between far-infrared and UV luminosity, IRX, is commonly employed to account for obscured UV emission. We present a simple model that explores the physical origin of variations in the IRX - β\beta dust attenuation relation. A relative increase in FUV attenuation compared to NUV attenuation and an increasing stellar population age cause variations towards red UV slopes for a fixed IRX. Dust geometry effects (turbulence, dust screen with holes, mixing of stars within the dust screen, two-component dust model) cause variations towards blue UV slopes. Poor photometric sampling of the UV spectrum causes additional observational variations. We provide an analytic approximation for the IRX - β\beta relation invoking a subset of the explored physical processes (dust type, stellar population age, turbulence). We discuss observed variations in the IRX - β\beta relation for local (sub-galactic scales) and high-redshift (normal and dusty star-forming galaxies, galaxies during the epoch of reionization) galaxies in the context of the physical processes explored in our model. High spatial resolution imaging of the UV and sub-mm emission of galaxies can constrain the IRX - β\beta dust attenuation relation for different galaxy types at different epochs, where different processes causing variations may dominate. These constraints will allow the use of the IRX - β\beta relation to estimate intrinsic SFRs of galaxies, despite the lack of a universal relation.Comment: Accepted for publication in MNRA

    Coding Issues in Modality Analysis

    Get PDF
    Ambiguous phrases are the bane of researchers' attempts to ensure acceptably high interrater agreement in the encoding of texts. When modal usages and their associated rationales are encoded as part of a text analysis, ambiguities arise in characteristic (and thus identifiable) ways. This article illustrates the typical sources of disagreement among coders involved in encoding data during a modality analysis and provides concrete strategies for improving interrater agreement

    The SKA as a Doorway to Angular Momentum

    Full text link
    Angular momentum is one of the most fundamental physical quantities governing galactic evolution. Differences in the colours, morphologies, star formation rates and gas fractions amongst galaxies of equal stellar/baryon mass M are potentially widely explained by variations in their specific stellar/baryon angular momentum j. The enormous potential of angular momentum science is only just being realised, thanks to the emergence of the first simulations of galaxies with converged spins, paralleled by a dramatic increase in kinematic observations. Such observations are still challenged by the fact that most of the stellar/baryon angular momentum resides at large radii. In fact, the radius that maximally contributes to the angular momentum of an exponential disk (3Re-4Re) is twice as large as the radius that maximally contributes to the disk mass; thus converged measurements of angular momentum require either extremely deep IFS data or, alternatively, kinematic measurements of neutral atomic hydrogen (HI), which naturally resides at the large disk radii that dominate the angular momentum. The SKA has a unique opportunity to become the world-leading facility for angular momentum studies due to its ability to measure the resolved and/or global HI kinematics in very large and well-characterised galaxy samples. These measurements will allow, for example, (1) a very robust determination of the two-dimensional distribution of galaxies in the (M,j)-plane, (2) the largest, systematic measurement of the relationship between M, j, and tertiary galaxy properties, and (3) the most accurate measurement of the large-scale distribution and environmental dependence of angular momentum vectors, both in terms of norm and orientation. All these measurements will represent exquisite tools to build a next generation of galaxy evolution models.Comment: 13 pages, 5 figures, 3 table

    Evolution of the atomic and molecular gas content of galaxies in dark matter haloes

    Get PDF
    We present a semi-empirical model to infer the atomic and molecular hydrogen content of galaxies as a function of halo mass and time. Our model combines the SFR-halo mass-redshift relation (constrained by galaxy abundances) with inverted SFR-surface density relations to infer galaxy H I and H2 masses. We present gas scaling relations, gas fractions, and mass functions from z = 0 to z = 3 and the gas properties of galaxies as a function of their host halo masses. Predictions of our work include: 1) there is a ~ 0.2 dex decrease in the H I mass of galaxies as a function of their stellar mass since z = 1.5, whereas the H2 mass of galaxies decreases by > 1 dex over the same period. 2) galaxy cold gas fractions and H2 fractions decrease with increasing stellar mass and time. Galaxies with M* > 10^10 Msun are dominated by their stellar content at z < 1, whereas less-massive galaxies only reach these gas fractions at z = 0. We find the strongest evolution in relative gas content at z < 1.5. 3) the SFR to gas mass ratio decreases by an order of magnitude from z = 3 to z = 0. This is consistent with lower H2 fractions; these lower fractions in combination with smaller gas reservoirs correspond to decreased present-day galaxy SFRs. 4) an H2-based star- formation relation can simultaneously fuel the evolution of the cosmic star-formation and reproduce the observed weak evolution in the cosmic HI density. 5) galaxies residing in haloes with masses near 10^12 Msun are most efficient at obtaining large gas reservoirs and forming H2 at all redshifts. These two effects lie at the origin of the high star-formation efficiencies in haloes with the same mass.Comment: accepted for publication in MNRAS, 20 pages, 16 figures (+ 1 figure in appendix), data files are accessible through http://www.eso.org/~gpopping/Gergo_Poppings_Homepage/Data.htm

    The ESO UVES Advanced Data Products Quasar Sample - II. Cosmological Evolution of the Neutral Gas Mass Density

    Full text link
    Quasar foreground damped absorbers, associated with HI-rich galaxies allow to estimate the neutral gas mass over cosmic time, which is a possible indicator of gas consumption as star formation proceeds. The DLAs and sub-DLAs are believed to contain a large fraction of neutral gas mass in the Universe. In Paper I of the series, we present the results of a search for DLAs and sub-DLAs in the ESO-UVES Advanced Data Products dataset of 250 quasars. Here we use an unbiased sub-sample of sub-DLAs from this dataset. We build a subset of 122 quasars ranging from 1.5 <z_em < 5.0, suitable for statistical analysis. The statistical sample is analyzed in conjunction with other sub-DLA samples from the literature. This makes up a combined sample of 89 sub-DLAs over a redshift path of Δz=193\Delta z=193. Redshift evolution of the number density and the line density are derived for sub-DLAs and compared with the LLSs and DLAs measurements from the literature. The results indicate that these three classes of absorbers are evolving in the redshift interval 1 < z < 5. The column density distribution, f(N,z), down to the sub-DLA limit is determined. The flattening of f_(N,z) in the sub-DLA regime is present in the observations. The redshift evolution of f_(N,z) down to sub-DLA regime is also presented, indicating the presence of more sub-DLAs at high-redshift as compared to low-redshift. f_(N,z) is further used to determine the neutral gas mass density, Omega_g, at 1.5 < z < 5.0. The complete sample shows that sub-DLAs contribute 8-20% to the total Omega_g from 1.5 < z < 5.0. In agreement with previous studies, no evolution of Omega_g is seen from low-redshift to high-redshift, suggesting that star formation solely cannot explain this non-evolution and replenishment of gas and/or recombination of ionized gas is needed. (Abridged)Comment: 20 pages, 10 figures, 7 table

    The nature of the ISM in galaxies during the star-formation activity peak of the Universe

    Get PDF
    We combine a semi-analytic model of galaxy formation, tracking atomic and molecular phases of cold gas, with a three-dimensional radiative-transfer and line tracing code to study the sub-mm emission from atomic and molecular species (CO, HCN, [CI], [CII], [OI]) in galaxies. We compare the physics that drives the formation of stars at the epoch of peak star formation (SF) in the Universe (z = 2.0) with that in local galaxies. We find that normal star-forming galaxies at high redshift have much higher CO-excitation peaks than their local counterparts and that CO cooling takes place at higher excitation levels. CO line ratios increase with redshift as a function of galaxy star-formation rate, but are well correlated with H2 surface density independent of redshift. We find an increase in the [OI]/[CII] line ratio in typical star-forming galaxies at z = 1.2 and z = 2.0 with respect to counterparts at z = 0. Our model results suggest that typical star-forming galaxies at high redshift consist of much denser and warmer star-forming clouds than their local counterparts. Galaxies belonging to the tail of the SF activity peak at z = 1.2 are already less dense and cooler than counterparts during the actual peak of SF activity (z = 2.0). We use our results to discuss how future ALMA surveys can best confront our predictions and constrain models of galaxy formation.Comment: 19 pages, 14 figures, accepted for publication in MNRA

    The Characterised Noise Hi source finder: Detecting Hi galaxies using a novel implementation of matched filtering

    Full text link
    The spectral line datacubes obtained from the Square Kilometre Array (SKA) and its precursors, such as the Australian SKA Pathfinder (ASKAP), will be sufficiently large to necessitate automated detection and parametrisation of sources. Matched filtering is widely acknowledged as the best possible method for the automated detection of sources. This paper presents the Characterised Noise Hi (CNHI) source finder, which employs a novel implementation of matched filtering. This implementation is optimised for the 3-D nature of the planned Wide-field ASKAP Legacy L-band All- sky Blind surveY's (WALLABY) Hi spectral line observations. The CNHI source finder also employs a novel sparse representation of 3-D objects, with a high compression rate, to implement Lutz one-pass algorithm on datacubes that are too large to process in a single pass. WALLABY will use ASKAP's phenomenal 30 square degree field of view to image \sim 70% of the sky. It is expected that WALLABY will find 500 000 Hi galaxies out to z \sim 0.2.Comment: Part of the 2012 PASA Source Finding Special Issue, 10 figure
    corecore