2,360 research outputs found

    AGN-driven helium reionization and the incidence of extended HeIII regions at redshift z>3

    Full text link
    We use hydrodynamic simulations post-processed with the radiative-transfer code RADAMESH to assess recent claims that the low HeII opacity observed in z>3 quasar spectra may be incompatible with models of HeII reionization driven by the observed population of active galactic nuclei (AGNs). In particular, building upon our previous work, we consider an early population of sources and start the radiative-transfer calculation at redshifts z>=5. Our model faithfully reproduces the emissivity of optically selected AGNs as inferred from measurements of their luminosity function. We find that HeII reionization is very extended in redshift ({\Delta} z>=2) and highly spatially inhomogeneous. In fact, mock spectra extracted from the simulations show a large variability in the evolution of the HeII effective optical depth within chunks of size {\Delta} z=0.04. Regions with low opacity ({\tau}^{eff}_{HeII}<3) can be found at high redshift, in agreement with the most recent observations of UV-transmitting quasars. At the highest redshift currently probed by observations (z~3.4), our updated model predicts a much lower HeII effective optical depth than previous simulations in the literature relieving most of the tension with the current data, that, however, still persists at about the (Gaussian) 1{\sigma} to 2{\sigma} level. Given the very small number of observed lines of sight, our analysis indicates that current data cannot rule out a purely AGN-driven scenario with high statistical significance.Comment: 12 pages, 8 figures. Matches version accepted for publication in MNRA

    The formation of CDM haloes II: collapse time and tides

    Full text link
    We use two cosmological simulations of structure formation in the LambdaCDM scenario to study the evolutionary histories of dark-matter haloes and to characterize the Lagrangian regions from which they form. We focus on haloes identified at redshift z_id=0 and show that the classic ellipsoidal collapse model systematically overestimates their collapse times. If one imposes that halo collapse takes place at z_id, this model requires starting from a significantly lower linear density contrast than what is measured in the simulations at the locations of halo formation. We attempt to explain this discrepancy by testing two key assumptions of the model. First, we show that the tides felt by collapsing haloes due to the surrounding large-scale structure evolve non-linearly. Although this effect becomes increasingly important for low-mass haloes, accounting for it in the ellipsoidal collapse model only marginally improves the agreement with N-body simulations. Second, we track the time evolution of the physical volume occupied by forming haloes and show that, after turnaround, it generally stabilizes at a well-defined redshift, z_c>z_id, contrary to the basic assumption of extended Press-Schechter theory based on excursion sets. We discuss the implications of this result for understanding the origin of the mass-dependence and scatter in the linear threshold for halo formation. Finally, we show that, when tuned for collapse at z_c, a modified version of the ellipsoidal collapse model that also accounts for the triaxial nature of protohaloes predicts their linear density contrast in an unbiased way.Comment: 15 pages, 11 figures, MNRAS in pres

    Properties of Dark Matter Haloes in Clusters, Filaments, Sheets and Voids

    Get PDF
    Using a series of high-resolution N-body simulations of the concordance cosmology we investigate how the formation histories, shapes and angular momenta of dark-matter haloes depend on environment. We first present a classification scheme that allows to distinguish between haloes in clusters, filaments, sheets and voids in the large-scale distribution of matter. This method is based on a local-stability criterion for the orbits of test particles and closely relates to the Zel'dovich approximation. Applying this scheme to our simulations we then find that: i) Mass assembly histories and formation redshifts strongly depend on environment for haloes of mass M<M* (haloes of a given mass tend to be older in clusters and younger in voids) and are independent of it for larger masses; ii) Low-mass haloes in clusters are generally less spherical and more oblate than in other regions; iii) Low-mass haloes in clusters have a higher median spin than in filaments and present a more prominent fraction of rapidly spinning objects; we identify recent major mergers as a likely source of this effect. For all these relations, we provide accurate functional fits as a function of halo mass and environment. We also look for correlations between halo-spin directions and the large-scale structures: the strongest effect is seen in sheets where halo spins tend to lie within the plane of symmetry of the mass distribution. Finally, we measure the spatial auto-correlation of spin directions and the cross-correlation between the directions of intrinsic and orbital angular momenta of neighbouring haloes. While the first quantity is always very small, we find that spin-orbit correlations are rather strong especially for low-mass haloes in clusters and high-mass haloes in filaments.Comment: 13 pages, 13 figures. Version accepted for publication in MNRAS (references added). Version with high-resolution figures available at http://www.exp-astro.phys.ethz.ch/hahn/pub/HPCD06.pd

    The bias field of dark matter haloes

    Full text link
    This paper presents a stochastic approach to the clustering evolution of dark matter haloes in the Universe. Haloes, identified by a Press-Schechter-type algorithm in Lagrangian space, are described in terms of `counting fields', acting as non-linear operators on the underlying Gaussian density fluctuations. By ensemble averaging these counting fields, the standard Press-Schechter mass function as well as analytic expressions for the halo correlation function and corresponding bias factors of linear theory are obtained, thereby extending the recent results by Mo and White. The non-linear evolution of our halo population is then followed by solving the continuity equation, under the sole hypothesis that haloes move by the action of gravity. This leads to an exact and general formula for the bias field of dark matter haloes, defined as the local ratio between their number density contrast and the mass density fluctuation. Besides being a function of position and `observation' redshift, this random field depends upon the mass and formation epoch of the objects and is both non-linear and non-local. The latter features are expected to leave a detectable imprint on the spatial clustering of galaxies, as described, for instance, by statistics like bispectrum and skewness. Our algorithm may have several interesting applications, among which the possibility of generating mock halo catalogues from low-resolution N-body simulations.Comment: 23 pages, LaTeX (included psfig.tex), 4 figures. Few comments and references have been added, and minor typos and errors corrected. This version matches the refereed one, in press in MNRA
    corecore