871 research outputs found

    Surface and thermomechanical characterization of polyurethane networks based on poly(dimethylsiloxane) and hyperbranched polyester

    Get PDF
    Two series of polyurethane (PU) networks based on Boltorn® hyperbranched polyester (HBP) and hydroxyethoxy propyl terminated poly(dimethylsiloxane) (EO-PDMS) or hydroxy propyl terminated poly(dimethylsiloxane) (HPPDMS), were synthesized. The effect of the type of soft PDMS segment on the properties of PUs was investigated by Fourier transform infrared spectroscopy (FTIR), contact angle measurements, surface free energy determination, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC). The surface characterization of PUs showed existence of slightly amphiphilic character and it revealed that PUs based on HP-PDMS have lower surface free energy, more hydrophobic surface and better waterproof performances than PUs based on EO-PDMS. PUs based on HPPDMS had higher crosslinking density than PUs based on EO-PDMS. DSC and DMTA results revealed that these newlysynthesized PUs exhibit the glass transition temperatures of the soft and hard segments. DMTA, SEM and AFM results confirmed existence of microphase separated morphology. The results obtained in this work indicate that PU networks based on HBP and PDMS have improved surface and thermomechanical properties

    Modification of the Cu-ETP copper surface layer with chromium by physical vapor deposition (PvD) and diffusion annealing

    Get PDF
    In the study, an attempt was made to increase durability of copper by creating a surface layer saturated or supersaturated with chromium only in the area of the highest thermo-mechanical loads during the welding process. There was developed a two-stage technological process, consisting of: application of chrome coating of the thickness approx. 1 µm on the Cu-ETP copper surface using the PVD method, and then performing the process of its diffusion by annealing at a temperature of 950°C in the vacuum. As a result, a diffusion CuCr layer with a thickness of approx. 20 µm was obtained, with hardness of approx. 120 HV0,01

    Structure and thickness of Y2O3 coatings deposited by plasma spray physical vapour deposition (PS-PvD) method on graphite

    Get PDF
    Graphite is one of materials used in metallurgical applications; however, it is characterized by low oxidation resistance. In the article, an yttrium oxide coating was deposited using Plasma Spray Physical Vapour deposition method (PS-PVD) on graphite. Next, the influence of selected process parameters (power current, powder feed rate, or plasma gasses composition) on coating thickness and structure were discussed. The obtained coatings were characterized by hybrid structure with partially formed columns. The linear relationship between power current and coating thickness was observed. There was no significant influence of other analyses’ process parameters on coating thickness or microstructure

    Modification of the Cu-ETP copper surface layer with chromium by physical vapor deposition (PvD) and diffusion annealing

    Get PDF
    In the study, an attempt was made to increase durability of copper by creating a surface layer saturated or supersaturated with chromium only in the area of the highest thermo-mechanical loads during the welding process. There was developed a two-stage technological process, consisting of: application of chrome coating of the thickness approx. 1 µm on the Cu-ETP copper surface using the PVD method, and then performing the process of its diffusion by annealing at a temperature of 950°C in the vacuum. As a result, a diffusion CuCr layer with a thickness of approx. 20 µm was obtained, with hardness of approx. 120 HV0,01

    Structure and thickness of Y2O3 coatings deposited by plasma spray physical vapour deposition (PS-PvD) method on graphite

    Get PDF
    Graphite is one of materials used in metallurgical applications; however, it is characterized by low oxidation resistance. In the article, an yttrium oxide coating was deposited using Plasma Spray Physical Vapour deposition method (PS-PVD) on graphite. Next, the influence of selected process parameters (power current, powder feed rate, or plasma gasses composition) on coating thickness and structure were discussed. The obtained coatings were characterized by hybrid structure with partially formed columns. The linear relationship between power current and coating thickness was observed. There was no significant influence of other analyses’ process parameters on coating thickness or microstructure

    Two-pronged attack: dual inhibition of Plasmodium falciparum M1 and M17 metalloaminopeptidases by a novel series of hydroxamic acid-based inhibitors

    Get PDF
    Plasmodium parasites, the causative agents of malaria, have developed resistance to most of our current antimalarial therapies, including artemisinin combination therapies which are widely described as our last line of defense. Antimalarial agents with a novel mode of action are urgently required. Two Plasmodium falciparum aminopeptidases, PfA-M1 and PfA-M17, play crucial roles in the erythrocytic stage of infection and have been validated as potential antimalarial targets. Using compound-bound crystal structures of both enzymes, we have used a structure-guided approach to develop a novel series of inhibitors capable of potent inhibition of both PfA-M1 and PfA-M17 activity and parasite growth in culture. Herein we describe the design, synthesis, and evaluation of a series of hydroxamic acid-based inhibitors and demonstrate the compounds to be exciting new leads for the development of novel antimalarial therapeutics

    Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: a meta-analysis and meta-regression of randomized controlled trials

    Get PDF
    BACKGROUND: Randomized controlled trials (RCTs) suggest that supplementation with omega-3 polyunsaturated fatty acids (n-3PUFAs) may favourably modify cardiometabolic biomarkers in type 2 diabetes (T2DM). Previous meta-analyses are limited by insufficient sample sizes and omission of meta-regression techniques, and a large number of RCTs have subsequently been published since the last comprehensive meta-analysis. Updated information regarding the impact of dosage, duration or an interaction between these two factors is therefore warranted. The objective was to comprehensively assess the effect of n-3PUFAs supplementation on cardiometabolic biomarkers including lipid profiles, inflammatory parameters, blood pressure, and indices of glycaemic control, in people with T2DM, and identify whether treatment dosage, duration or an interaction thereof modify these effects. METHODS: Databases including PubMed and MEDLINE were searched until 13th July 2017 for RCTs investigating the effect of n-3PUFAs supplementation on lipid profiles, inflammatory parameters, blood pressure, and indices of glycaemic control. Data were pooled using random-effects meta-analysis and presented as standardised mean difference (Hedges g) with 95% confidence intervals (95% CI). Meta-regression analysis was performed to investigate the effects of duration of supplementation and total dosage of n-3PUFAs as moderator variables where appropriate. RESULTS: A total of 45 RCTs were identified, involving 2674 people with T2DM. n-3PUFAs supplementation was associated with significant reductions in LDL [ES: - 0.10, (95% CI - 0.17, - 0.03); p = 0.007], VLDL (ES: - 0.26 (- 0.51, - 0.01); p = 0.044], triglycerides (ES: - 0.39 (- 0.55, - 0.24; p ≤ 0.001] and HbA1c (ES: - 0.27 (- 0.48, - 0.06); p = 0.010]. Moreover, n-3PUFAs supplementation was associated with reduction in plasma levels of TNF-α [ES: - 0.59 (- 1.17, - 0.01); p = 0.045] and IL-6 (ES: - 1.67 (- 3.14, - 0.20); p = 0.026]. All other lipid markers, indices of glycaemic control, inflammatory parameters, and blood pressure remained unchanged (p > 0.05). CONCLUSIONS: n-3PUFAs supplementation produces favourable hypolipidemic effects, a reduction in pro-inflammatory cytokine levels and improvement in glycaemia. Neither duration nor dosage appear to explain the observed heterogeneity in response to n-3PUFAs. Trial registration This trial was registered at http://www.crd.york.ac.uk as CRD42016050802

    Montmorency cherry supplementation attenuates vascular dysfunction induced by prolonged forearm occlusion in overweight, middle-aged men

    Get PDF
    Flavonoid supplementation improves brachial artery flow-mediated dilation (FMD), but it is not known whether flavonoids protect against vascular dysfunction induced by ischemia-reperfusion (IR) injury and associated respiratory burst. In a randomized, double-blind, placebo-controlled, crossover study, we investigated whether 4 wk supplementation with freeze-dried Montmorency cherry (MC) attenuated suppression of FMD after IR induced by prolonged forearm occlusion. Twelve physically inactive overweight, middle-aged men (52.8 ± 5.8 yr, BMI: 28.1 ± 5.3 kg/m2) consumed MC (235 mg/day anthocyanins) or placebo capsules for 4 wk, with supplementation blocks separated by 4 wk washout. Before and after each supplementation block, FMD responses and plasma nitrate and nitrite ([ N O − 2 ]) concentrations were measured at baseline and 15, 30, and 45 min after prolonged (20 min) forearm occlusion. FMD response was significantly depressed by the prolonged occlusion ( P < 0.001). After a 45-min reperfusion, FMD was restored to baseline levels after MC (ΔFMD presupplementation: -30.5 ± 8.4%, postsupplementation: -0.6 ± 9.5%) but not placebo supplementation (ΔFMD presupplementation: -11.6 ± 10.6, postsupplementation: -25.4 ± 4.0%; condition × supplement interaction: P = 0.038). Plasma [ N O − 2 ] decreased after prolonged occlusion but recovered faster after MC compared with placebo (Δ45 min to baseline; MC: presupplementation: -15.3 ± 9.6, postsupplementation: -6.2 ± 8.1; Placebo: presupplementation: -16.3 ± 5.9, postsupplementation: -27.7 ± 11.1 nmol/l; condition × supplement × time interaction: P = 0.033). Plasma peroxiredoxin concentration ([Prx2]) was significantly higher after MC (presupplementation: 22.8 ± 1.4, postsupplementation: 28.0 ± 2.4 ng/ml, P = 0.029) but not after placebo supplementation (presupplementation: 22.1 ± 2.2, postsupplementation: 23.7 ± 1.5 ng/ml). In conclusion, 4 wk MC supplementation enhanced recovery of endothelium-dependent vasodilatation after IR, in parallel with faster recovery of plasma [ N O − 2 ], suggesting NO dependency. These protective effects seem to be related to increased plasma [Prx2], presumably conferring protection against the respiratory burst during reperfusion. NEW & NOTEWORTHY This is the first study to demonstrate that 4 wk of Montmorency cherry powder supplementation exerted protective effects on endothelium-dependent vasodilation after transient ischemia-reperfusion injury in overweight, physically inactive, nonmedicated, hypertensive middle-aged men. These effects seem to be due to increased nitric oxide availability, as evidenced by higher plasma nitrite concentration and peak arterial diameter during the flow-mediated dilation measurement. This may be a consequence of increased concentration of peroxiredoxin and other antioxidant systems and, hence, reduced reactive oxygen species exposure.This article is freely available via Open Access. Click on the Publisher URL to access it via the publisher's site.This study was partially funded by a grant from the Cherry Research Committee, Aboo-Bakkar was supported by a Ph.D. studentship from the Universiti Kuala Lumpur, and Fulford’s salary was provided by National Institute for Health Research.accepted version (12 month embargo

    Mechanism and specificity of the human paracaspase MALT1

    Get PDF
    The paracaspase domain of MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1) is a component of a gene translocation fused to the N-terminal domains of the cellular inhibitor of apoptosis protein 2. The paracaspase itself, commonly known as MALT1, participates in the NF-κB (nuclear factor κB) pathway, probably by driving survival signals downstream of the B-cell antigen receptor through MALT1 proteolytic activity. We have developed methods for the expression and purification of recombinant full-length MALT1 and its constituent catalytic domain alone. Both are activated by dimerization without cleavage, with a similar dimerization barrier to the distantly related cousins, the apical caspases. By using positional-scanning peptidyl substrate libraries we demonstrate that the activity and specificity of full-length MALT1 is recapitulated by the catalytic domain alone, showing a stringent requirement for cleaving after arginine, and with striking peptide length constraints for efficient hydrolysis. Rates of cleavage (kcat/Km values) of optimal peptidyl substrates are in the same order (103–104 M−1·s−1) as for a putative target protein CYLD. Thus MALT1 has many similarities to caspase 8, even cleaving the putative target protein CYLD with comparable efficiencies, but with diametrically opposite primary substrate specificity

    High Pressure High Temperature Polymerization of Ammonia Borane in Porous Silica Matrix

    Get PDF
    Ammonia borane (AB) is of great interest for chemical hydrogen storage as it has one of the highest releasable hydrogen content of 19.6 wt.% [1,2]. Hydrogen is released in several steps upon heating at relatively low temperature along with the polymerization of ammonia borane to form polyaminoborane, polyiminoborane and, at still increasing temperature, boron nitride [3]. Here we present our high pressure high temperature study on ammonia borane confinement in siliceous zeolite theta-1 (TON) and silicalite-1F (MFI) porous templates. Our recent high pressure high temperature (HPHT) synchrotron x-ray diffraction and Raman spectroscopic experiments revealed that the compression of AB/TON or AB/MFI composite materials promotes the insertion of ammonia borane into the pores of a template. Its further high temperature treatment results in a release of a significant amount of hydrogen and in the formation of polyaminoborane and polyiminoborane polymers, both in the bulk ammonia borane outside the zeolite, as well as confined in the channels of the porous template. In consequence, strong expansion of the zeolite pores accompanied with significant increase of the unit cell volume and series of phase transitions have been observed [4]. Financial support from the Agence Nationale de la Recherche (ANR-19-CE08-0016) is gratefully acknowledged
    corecore