882 research outputs found
Identification of a novel regulatory mechanism for the disease associated protein, uPAR
Expression quantitative trait loci (eQTLs), as determined through a series of statistical association studies collectively known as genome-wide association (GWA) studies, have provided us with a hypothesis free approach for the investigation into regulatory loci for disease and disease-associated proteins. This has led to the identification of multiple novel gene-disease interactions, especially in the field of respiratory medicine. This review describes the case study of a GWA approach in order to identify eQTLs for the soluble form of the urokinase plasminogen activator receptor (uPAR), a protein associated with obstructive respiratory disease. Molecular and cellular investigations based on the eQTLs identified for this GWA study has led to the identification of a novel regulatory mechanism with implications in the disease processes with which this protein is associated. This highlights the potential of eQTLs defined associations in the identification of novel mechanisms, with implications in disease.peer-reviewe
The Pion-Photon Transition Form Factor and New Physics in the Tau Sector
Recent measurement of the form factor of the neutral pion
in the high region disagrees with {\em a priori} predictions of QCD-based
calculations. We comment on existing explanations, and analyze a possibility
that this discrepancy is not due to poorly understood QCD effects, but is a
result of some new physics beyond the standard model (SM). We show that such
physics would necessarily involve a new neutral light state with mass close to
the mass of , and with stronger than couplings to heavier SM
flavors such as , , and . It is found that only the coupling to the
lepton can survive the existing constraints and lead to the observed
rise of the pion form factor relative to at high . We perform
numerical fits to data and determine the allowed range of masses and couplings
for such new particles. This range of masses and couplings could also reduce or
eliminate the tension between the and decay determinations of
the hadronic vacuum polarization. Dedicated experimental analysis of
pair production in association with such new states should provide a conclusive
test of the new physics hypothesis as an explanation to the pion form factor
rise. We also comment on the calculations of the pion form factor in the chiral
quark model, and point out a possible dynamical origin of the quark mass scale
inferred from the form factor measurement.Comment: 13 pages, 6 figures, revtex4-1; v2: additional references, improved
discussion of pion mixing case, published versio
The Electromagnetic Self-Energy Contribution to M_p - M_n and the Isovector Nucleon Magnetic Polarizability
We update the determination of the isovector nucleon electromagnetic
self-energy, valid to leading order in QED. A technical oversight in the
literature concerning the elastic contribution to Cottingham's formula is
corrected and modern knowledge of the structure functions is used to precisely
determine the inelastic contribution. We find \delta M_{p-n}^\gamma =
1.30(03)(47) MeV. The largest uncertainty arises from a subtraction term
required in the dispersive analysis, which can be related to the isovector
magnetic polarizability. With plausible model assumptions, we can combine our
calculation with additional input from lattice QCD to constrain this
polarizability as: \beta_{p-n} = -0.87(85) x 10^{-4} fm^3.Comment: 5 pages, version accepted for publication in PR
Isospin breaking in the nucleon mass and the sensitivity of β decays to new physics
We discuss the consequences of the approximate conservation of the vector and axial currents for the hadronic matrix elements appearing in β decay if nonstandard interactions are present. In particular, the isovector (pseudo)scalar charge gS(P) of the nucleon can be related to the difference (sum) of the nucleon masses in the absence of electromagnetic effects. Using recent determinations of these quantities from phenomenological and lattice QCD studies we obtain the accurate values gS=1.02(11) and gP=349(9) in the modified minimal subtraction scheme at μ=2 GeV. The consequences for searches of nonstandard scalar interactions in nuclear β decays are studied, finding for the corresponding Wilson coefficient εS=0.0012(24) at 90% C.L., which is significantly more stringent than current LHC bounds and previous low-energy bounds using less precise gS values. We argue that our results could be rapidly improved with updated computations and the direct calculation of certain ratios in lattice QCD. Finally, we discuss the pion-pole enhancement of gP, which makes β decays much more sensitive to nonstandard pseudoscalar interactions than previously thought
Genetic risk factors for the development of allergic disease identified by genome-wide association
An increasing proportion of the worldwide population is affected by allergic diseases such as allergic rhinitis (AR), atopic dermatitis (AD) and allergic asthma and improved treatment options are needed particularly for severe, refractory disease. Allergic diseases are complex and development involves both environmental and genetic factors. Although the existence of a genetic component for allergy was first described almost 100 years ago, progress in gene identification has been hindered by lack of high throughput technologies to investigate genetic variation in large numbers of subjects. The development of Genome-Wide Association Studies (GWAS), a hypothesis-free method of interrogating large numbers of common variants spanning the entire genome in disease and non-disease subjects has revolutionised our understanding of the genetics of allergic disease. Susceptibility genes for asthma, AR and AD have now been identified with confidence, suggesting there are common and distinct genetic loci associated with these diseases, providing novel insights into potential disease pathways and mechanisms. Genes involved in both adaptive and innate immune mechanisms have been identified, notably including multiple genes involved in epithelial function/secretion, suggesting that the airway epithelium may be particularly important in asthma. Interestingly, concordance/discordance between the genetic factors driving allergic traits such as IgE levels and disease states such as asthma have further supported the accumulating evidence for heterogeneity in these diseases. While GWAS have been useful and continue to identify novel genes for allergic diseases through increased sample sizes and phenotype refinement, future approaches will integrate analyses of rare variants, epigenetic mechanisms and eQTL approaches, leading to greater insight into the genetic basis of these diseases. Gene identification will improve our understanding of disease mechanisms and generate potential therapeutic opportunities
Canonical Generations and the British Left: The Narrative Construction of the Miners’ Strike 1984–85
‘Generations’ have been invoked to describe a variety of social and cultural relationships, and to understand the development of self-conscious group identity. Equally, the term can be an applied label and politically useful construct; generations can be retrospectively produced. Drawing on the concept of ‘canonical generations’ – those whose experiences come to epitomise an event of historic and symbolic importance – this article examines the narrative creation and functions of ‘generations’ as collective memory shapes and re-shapes the desire for social change. Building a case study of the canonical role of the miners’ strike of 1984–85 in the narrative history of the British left, it examines the selective appropriation and transmission of the past in the development of political consciousness. It foregrounds the autobiographical narratives of activists who, in examining and legitimising their own actions and prospects, (re)produce a ‘generation’ in order to create a relatable and useful historical understanding
Renormalisation of the scalar energy-momentum tensor with the Wilson flow
Talk presented at the 34th International Symposium on Lattice Field Theory (Lattice 2016) by Susanne EhretThe non-perturbative computation of the energy-momentum tensor can be used to study the scaling behaviour of strongly coupled quantum field theories. The Wilson flow is an essential tool to find a meaningful formulation of the energy-momentum tensor on the lattice. We extend recent studies of the renormalisation of the energy-momentum tensor in four-dimensional gauge theory to the case of a three-dimensional scalar theory to investigate its intrinsic structure and numerical feasibility on a more basic level. In this paper, we discuss translation Ward identities, introduce the Wilson flow for scalar theory, and present our results for the renormalisation constants of the scalar energy-momentum tensor
Electromagnetic corrections to light hadron masses
At the precision reached in current lattice QCD calculations, electromagnetic
effects are becoming numerically relevant. We will present preliminary results
for electromagnetic corrections to light hadron masses, based on simulations in
which a degree of freedom is superimposed on QCD
configurations from the BMW collaboration.Comment: 7 pages, 2 figures, The XXVIII International Symposium on Lattice
Field Theory, June 14-19,2010, Villasimius, Sardinia Ital
Full QED+QCD Low-Energy Constants through Reweighting
The effect of sea quark electromagnetic charge on meson masses is
investigated, and first results for full QED+QCD low-energy constants are
presented. The electromagnetic charge for sea quarks is incorporated in
quenched QED+full QCD lattice simulations by a reweighting method. The
reweighting factor, which connects quenched and unquenched QED, is estimated
using a stochastic method on 2+1 flavor dynamical domain-wall quark ensembles.Comment: 5 pages, 9 figures, REVTeX 4.1, v2: published versio
- …
