2,211 research outputs found

    Expression signatures of cisplatin- and trametinib-treated early-stage medaka melanomas

    Get PDF
    Small aquarium fish models provide useful systems not only for a better understanding of the molecular basis of many human diseases, but also for first-line screening to identify new drug candidates. For testing new chemical substances, current strategies mostly rely on easy to perform and efficient embryonic screens. Cancer, however, is a disease that develops mainly during juvenile and adult stage. Long-term treatment and the challenge to monitor changes in tumor phenotype make testing of large chemical libraries in juvenile and adult animals cost prohibitive. We hypothesized that changes in the gene expression profile should occur early during anti-tumor treatment, and the disease-associated transcriptional change should provide a reliable readout that can be utilized to evaluate drug-induced effects. For the current study, we used a previously established medaka melanoma model. As proof of principle, we showed that exposure of melanoma developing fish to the drugs cisplatin or trametinib, known cancer therapies, for a period of seven days is sufficient to detect treatment-induced changes in gene expression. By examining whole body transcriptome responses we provide a novel route toward gene panels that recapitulate anti-tumor outcomes thus allowing a screening of thousands of drugs using a whole-body vertebrate model. Our results suggest that using disease-associated transcriptional change to screen therapeutic molecules in small fish model is viable and may be applied to pre-clinical research and development stages in new drug discovery

    Female Sex Development and Reproductive Duct Formation Depend on Wnt4a in Zebrafish.

    Get PDF
    In laboratory strains of zebrafish, sex determination occurs in the absence of a typical sex chromosome and it is not known what regulates the proportion of animals that develop as males or females. Many sex determination and gonad differentiation genes that act downstream of a sex chromosome are well conserved among vertebrates, but studies that test their contribution to this process have mostly been limited to mammalian models. In mammals, WNT4 is a signaling ligand that is essential for ovary and Müllerian duct development, where it antagonizes the male-promoting FGF9 signal. Wnt4 is well conserved across all vertebrates, but it is not known if Wnt4 plays a role in sex determination and/or the differentiation of sex organs in nonmammalian vertebrates. This question is especially interesting in teleosts, such as zebrafish, because they lack an Fgf9 ortholog. Here we show that wnt4a is the ortholog of mammalian Wnt4, and that wnt4b was present in the last common ancestor of humans and zebrafish, but was lost in mammals. We show that wnt4a loss-of-function mutants develop predominantly as males and conclude that wnt4a activity promotes female sex determination and/or differentiation in zebrafish. Additionally, both male and female wnt4a mutants are sterile due to defects in reproductive duct development. Together these results strongly argue that Wnt4a is a conserved regulator of female sex determination and reproductive duct development in mammalian and nonmammalian vertebrates

    Sex Reversal in Zebrafish fancl Mutants is Caused by Tp53-Mediated Germ Cell Apoptosis

    Get PDF
    The molecular genetic mechanisms of sex determination are not known for most vertebrates, including zebrafish. We identified a mutation in the zebrafish fancl gene that causes homozygous mutants to develop as fertile males due to female-to-male sex reversal. Fancl is a member of the Fanconi Anemia/BRCA DNA repair pathway. Experiments showed that zebrafish fancl was expressed in developing germ cells in bipotential gonads at the critical time of sexual fate determination. Caspase-3 immunoassays revealed increased germ cell apoptosis in fancl mutants that compromised oocyte survival. In the absence of oocytes surviving through meiosis, somatic cells of mutant gonads did not maintain expression of the ovary gene cyp19a1a and did not down-regulate expression of the early testis gene amh; consequently, gonads masculinized and became testes. Remarkably, results showed that the introduction of a tp53 (p53) mutation into fancl mutants rescued the sex-reversal phenotype by reducing germ cell apoptosis and, thus, allowed fancl mutants to become fertile females. Our results show that Fancl function is not essential for spermatogonia and oogonia to become sperm or mature oocytes, but instead suggest that Fancl function is involved in the survival of developing oocytes through meiosis. This work reveals that Tp53-mediated germ cell apoptosis induces sex reversal after the mutation of a DNA-repair pathway gene by compromising the survival of oocytes and suggests the existence of an oocyte-derived signal that biases gonad fate towards the female developmental pathway and thereby controls zebrafish sex determination

    A Plan for Improving the Pupil Activities Program in a Virginia High School

    Get PDF
    EducationMaster of Education (M.Ed.

    Project-Based Learning and its Impact on High School Students\u27 Attitudes Towards Mathematics: A Quantitative Study

    Get PDF
    This quantitative, quasi experimental, nonequivalent control group study analyzed the relationship between students engaging in project-based learning and its impact on their attitudes towards mathematics. Sixty-six high school students taking a non-entry level mathematics class participated in the study. This study compared students taking the same high school mathematics course with one group taught in the traditional way of lecture notes and tests and the second group being taught using projects. These students’ responses from the Attitudes Towards Mathematics Inventory were compared using one-way analysis of covariance to determine a difference in student attitudes. The study determined that there was no significant statistical difference in student attitudes toward mathematics between the project-based group and the traditional instruction group when controlling for pretest scores. Future research recommendations include a longer timeframe, focusing on special education students, and making accommodations for English Language Learners to help ameliorate language barriers

    Roles of brca2 (fancd1) in Oocyte Nuclear Architecture, Gametogenesis, Gonad Tumors, and Genome Stability in Zebrafish

    Full text link
    Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture
    corecore