188 research outputs found

    A genotype-guided strategy for oral P2Y₁₂ Inhibitors in primary PCI

    Get PDF
    BACKGROUND: It is unknown whether patients undergoing primary percutaneous coronary intervention (PCI) benefit from genotype-guided selection of oral P2Y12 inhibitors. METHODS: We conducted a randomized, open-label, assessor-blinded trial in which patients undergoing primary PCI with stent implantation were assigned in a 1:1 ratio to receive either a P2Y12 inhibitor on the basis of early CYP2C19 genetic testing (genotype-guided group) or standard treatment with either ticagrelor or prasugrel (standard-treatment group) for 12 months. In the genotype-guided group, carriers of CYP2C19*2 or CYP2C19*3 loss-of-function alleles received ticagrelor or prasugrel, and noncarriers received clopidogrel. The two primary outcomes were net adverse clinical events - defined as death from any cause, myocardial infarction, definite stent thrombosis, stroke, or major bleeding defined according to Platelet Inhibition and Patient Outcomes (PLATO) criteria - at 12 months (primary combined outcome; tested for noninferiority, with a noninferiority margin of 2 percentage points for the absolute difference) and PLATO major or minor bleeding at 12 months (primary bleeding outcome). RESULTS: For the primary analysis, 2488 patients were included: 1242 in the genotype-guided group and 1246 in the standard-treatment group. The primary combined outcome occurred in 63 patients (5.1%) in the genotype-guided group and in 73 patients (5.9%) in the standard-treatment group (absolute difference, -0.7 percentage points; 95% confidence interval [CI], -2.0 to 0.7; P<0.001 for noninferiority). The primary bleeding outcome occurred in 122 patients (9.8%) in the genotype-guided group and in 156 patients (12.5%) in the standard-treatment group (hazard ratio, 0.78; 95% CI, 0.61 to 0.98; P = 0.04). CONCLUSIONS: In patients undergoing primary PCI, a CYP2C19 genotype-guided strategy for selection of oral P2Y12 inhibitor therapy was noninferior to standard treatment with ticagrelor or prasugrel at 12 months with respect to thrombotic events and resulted in a lower incidence of bleeding. (Funded by the Netherlands Organization for Health Research and Development; POPular Genetics ClinicalTrials.gov number, NCT01761786; Netherlands Trial Register number, NL2872.)

    Modelling the Costs and Effects of Selective and Universal Hospital Admission Screening for Methicillin-Resistant Staphylococcus aureus

    Get PDF
    Background: Screening at hospital admission for carriage of methicillin-resistant Staphylococcus aureus (MRSA) has been proposed as a strategy to reduce nosocomial infections. The objective of this study was to determine the long-term costs and health benefits of selective and universal screening for MRSA at hospital admission, using both PCR-based and chromogenic media-based tests in various settings. Methodology/Principal Findings: A simulation model of MRSA transmission was used to determine costs and effects over 15 years from a US healthcare perspective. We compared admission screening together with isolation of identified carriers against a baseline policy without screening or isolation. Strategies included selective screening of high risk patients or universal admission screening, with PCR-based or chromogenic media-based tests, in medium (5%) or high nosocomial prevalence (15%) settings. The costs of screening and isolation per averted MRSA infection were lowest using selective chromogenic-based screening in high and medium prevalence settings, at 4,100and4,100 and 10,300, respectively. Replacing the chromogenic-based test with a PCR-based test costs 13,000and13,000 and 36,200 per additional infection averted, and subsequent extension to universal screening with PCR would cost 131,000and131,000 and 232,700 per additional infection averted, in high and medium prevalence settings respectively. Assuming 17,645benefitperinfectionaverted,themostcostsavingstrategiesinhighandmediumprevalencesettingswereselectivescreeningwithPCRandselectivescreeningwithchromogenic,respectively.Conclusions/Significance:Admissionscreeningcosts17,645 benefit per infection averted, the most cost-saving strategies in high and medium prevalence settings were selective screening with PCR and selective screening with chromogenic, respectively. Conclusions/ Significance: Admission screening costs 4,100-$21,200 per infection averted, depending on strategy and setting. Including financial benefits from averted infections, screening could well be cost saving

    Intradermal influenza vaccination of healthy adults using a new microinjection system: a 3-year randomised controlled safety and immunogenicity trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intradermal vaccination provides direct and potentially more efficient access to the immune system via specialised dendritic cells and draining lymphatic vessels. We investigated the immunogenicity and safety during 3 successive years of different dosages of a trivalent, inactivated, split-virion vaccine against seasonal influenza given intradermally using a microinjection system compared with an intramuscular control vaccine.</p> <p>Methods</p> <p>In a randomised, partially blinded, controlled study, healthy volunteers (1150 aged 18 to 57 years at enrolment) received three annual vaccinations of intradermal or intramuscular vaccine. In Year 1, subjects were randomised to one of three groups: 3 μg or 6 μg haemagglutinin/strain/dose of inactivated influenza vaccine intradermally, or a licensed inactivated influenza vaccine intramuscularly containing 15 μg/strain/dose. In Year 2 subjects were randomised again to one of two groups: 9 μg/strain/dose intradermally or 15 μg intramuscularly. In Year 3 subjects were randomised a third time to one of two groups: 9 μg intradermally or 15 μg intramuscularly. Randomisation lists in Year 1 were stratified for site. Randomisation lists in Years 2 and 3 were stratified for site and by vaccine received in previous years to ensure the inclusion of a comparable number of subjects in a vaccine group at each centre each year. Immunogenicity was assessed 21 days after each vaccination. Safety was assessed throughout the study.</p> <p>Results</p> <p>In Years 2 and 3, 9 μg intradermal was comparably immunogenic to 15 μg intramuscular for all strains, and both vaccines met European requirements for annual licensing of influenza vaccines. The 3 μg and 6 μg intradermal formulations were less immunogenic than intramuscular 15 μg. Safety of the intradermal and intramuscular vaccinations was comparable in each year of the study. Injection site erythema and swelling was more common with the intradermal route.</p> <p>Conclusion</p> <p>An influenza vaccine with 9 μg of haemagglutinin/strain given using an intradermal microinjection system showed comparable immunogenic and safety profiles to a licensed intramuscular vaccine, and presents a promising alternative to intramuscular vaccination for influenza for adults younger than 60 years.</p> <p>Trial registration</p> <p>Clinicaltrials.gov NCT00703651.</p

    A quantitative analysis of the effect of cycle length on arrhythmogenicity in hypokalaemic Langendorff-perfused murine hearts

    Get PDF
    The clinically established proarrhythmic effect of bradycardia and antiarrhythmic effect of lidocaine (10 μM) were reproduced in hypokalaemic (3.0 mM K+) Langendorff-perfused murine hearts paced over a range (80–180 ms) of baseline cycle lengths (BCLs). Action potential durations (at 90% repolarization, APD90s), transmural conduction times and ventricular effective refractory periods (VERPs) were then determined from monophasic action potential records obtained during a programmed electrical stimulation procedure in which extrasystolic stimuli were interposed following regular stimuli at successively decreasing coupling intervals. A novel graphical analysis of epicardial and endocardial, local and transmural relationships between APD90, corrected for transmural conduction time where appropriate, and VERP yielded predictions in precise agreement with the arrhythmogenic findings obtained over the entire range of BCLs studied. Thus, in normokalaemic (5.2 mM K+) hearts a statistical analysis confirmed that all four relationships were described by straight lines of gradients not significantly (P > 0.05) different from unity that passed through the origin and thus subtended constant critical angles, θ with the abscissa (45.8° ± 0.9°, 46.6° ± 0.5°, 47.6° ± 0.5° and 44.9° ± 0.8°, respectively). Hypokalaemia shifted all points to the left of these reference lines, significantly (P < 0.05) increasing θ at BCLs of 80–120 ms where arrhythmic activity was not observed (∼63°, ∼54°, ∼55° and ∼58°, respectively) and further significantly (P < 0.05) increasing θ at BCLs of 140–180 ms where arrhythmic activity was observed (∼68°, ∼60°, ∼61° and ∼65°, respectively). In contrast, the antiarrhythmic effect of lidocaine treatment was accompanied by a significant (P < 0.05) disruption of this linear relationship and decreases in θ in both normokalaemic (∼40°, ∼33°, ∼39° and ∼41°, respectively) and hypokalaemic (∼40°, ∼44°, ∼50° and ∼48°, respectively) hearts. This extended a previous approach that had correlated alterations in transmural repolarization gradients with arrhythmogenicity in murine models of the congenital long QT syndrome type 3 and hypokalaemia at a single BCL. Thus, the analysis in terms of APD90 and VERP provided a more sensitive indication of the effect of lidocaine than one only considering transmural repolarization gradients and may be particularly applicable in physiological and pharmacological situations in which these parameters diverge

    Biocontrol Potential of Forest Tree Endophytes

    Get PDF
    Peer reviewe

    Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background Reducing the burden of death due to infection is an urgent global public health priority. Previous studies have estimated the number of deaths associated with drug-resistant infections and sepsis and found that infections remain a leading cause of death globally. Understanding the global burden of common bacterial pathogens (both susceptible and resistant to antimicrobials) is essential to identify the greatest threats to public health. To our knowledge, this is the first study to present global comprehensive estimates of deaths associated with 33 bacterial pathogens across 11 major infectious syndromes.Methods We estimated deaths associated with 33 bacterial genera or species across 11 infectious syndromes in 2019 using methods from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, in addition to a subset of the input data described in the Global Burden of Antimicrobial Resistance 2019 study. This study included 343 million individual records or isolates covering 11 361 study-location-years. We used three modelling steps to estimate the number of deaths associated with each pathogen: deaths in which infection had a role, the fraction of deaths due to infection that are attributable to a given infectious syndrome, and the fraction of deaths due to an infectious syndrome that are attributable to a given pathogen. Estimates were produced for all ages and for males and females across 204 countries and territories in 2019. 95% uncertainty intervals (UIs) were calculated for final estimates of deaths and infections associated with the 33 bacterial pathogens following standard GBD methods by taking the 2.5th and 97.5th percentiles across 1000 posterior draws for each quantity of interest.Findings From an estimated 13.7 million (95% UI 10.9-17.1) infection-related deaths in 2019, there were 7.7 million deaths (5.7-10.2) associated with the 33 bacterial pathogens (both resistant and susceptible to antimicrobials) across the 11 infectious syndromes estimated in this study. We estimated deaths associated with the 33 bacterial pathogens to comprise 13.6% (10.2-18.1) of all global deaths and 56.2% (52.1-60.1) of all sepsis-related deaths in 2019. Five leading pathogens-Staphylococcus aureus, Escherichia coli, Streptococcus pneumoniae, Klebsiella pneumoniae, and Pseudomonas aeruginosa-were responsible for 54.9% (52.9-56.9) of deaths among the investigated bacteria. The deadliest infectious syndromes and pathogens varied by location and age. The age-standardised mortality rate associated with these bacterial pathogens was highest in the sub-Saharan Africa super-region, with 230 deaths (185-285) per 100 000 population, and lowest in the high-income super-region, with 52.2 deaths (37.4-71.5) per 100 000 population. S aureus was the leading bacterial cause of death in 135 countries and was also associated with the most deaths in individuals older than 15 years, globally. Among children younger than 5 years, S pneumoniae was the pathogen associated with the most deaths. In 2019, more than 6 million deaths occurred as a result of three bacterial infectious syndromes, with lower respiratory infections and bloodstream infections each causing more than 2 million deaths and peritoneal and intra-abdominal infections causing more than 1 million deaths.Interpretation The 33 bacterial pathogens that we investigated in this study are a substantial source of health loss globally, with considerable variation in their distribution across infectious syndromes and locations. Compared with GBD Level 3 underlying causes of death, deaths associated with these bacteria would rank as the second leading cause of death globally in 2019; hence, they should be considered an urgent priority for intervention within the global health community. Strategies to address the burden of bacterial infections include infection prevention, optimised use of antibiotics, improved capacity for microbiological analysis, vaccine development, and improved and more pervasive use of available vaccines. These estimates can be used to help set priorities for vaccine need, demand, and development. Copyright (c) 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license

    Health sector spending and spending on HIV/AIDS, tuberculosis, and malaria, and development assistance for health: progress towards Sustainable Development Goal 3

    Get PDF
    Background: Sustainable Development Goal (SDG) 3 aims to “ensure healthy lives and promote well-being for all at all ages”. While a substantial effort has been made to quantify progress towards SDG3, less research has focused on tracking spending towards this goal. We used spending estimates to measure progress in financing the priority areas of SDG3, examine the association between outcomes and financing, and identify where resource gains are most needed to achieve the SDG3 indicators for which data are available. Methods: We estimated domestic health spending, disaggregated by source (government, out-of-pocket, and prepaid private) from 1995 to 2017 for 195 countries and territories. For disease-specific health spending, we estimated spending for HIV/AIDS and tuberculosis for 135 low-income and middle-income countries, and malaria in 106 malaria-endemic countries, from 2000 to 2017. We also estimated development assistance for health (DAH) from 1990 to 2019, by source, disbursing development agency, recipient, and health focus area, including DAH for pandemic preparedness. Finally, we estimated future health spending for 195 countries and territories from 2018 until 2030. We report all spending estimates in inflation-adjusted 2019 US,unlessotherwisestated.Findings:SincethedevelopmentandimplementationoftheSDGsin2015,globalhealthspendinghasincreased,reaching, unless otherwise stated. Findings: Since the development and implementation of the SDGs in 2015, global health spending has increased, reaching 7·9 trillion (95% uncertainty interval 7·8–8·0) in 2017 and is expected to increase to 110trillion(107112)by2030.In2017,inlowincomeandmiddleincomecountriesspendingonHIV/AIDSwas11·0 trillion (10·7–11·2) by 2030. In 2017, in low-income and middle-income countries spending on HIV/AIDS was 20·2 billion (17·0–25·0) and on tuberculosis it was 109billion(103118),andinmalariaendemiccountriesspendingonmalariawas10·9 billion (10·3–11·8), and in malaria-endemic countries spending on malaria was 5·1 billion (4·9–5·4). Development assistance for health was 406billionin2019andHIV/AIDShasbeenthehealthfocusareatoreceivethehighestcontributionsince2004.In2019,40·6 billion in 2019 and HIV/AIDS has been the health focus area to receive the highest contribution since 2004. In 2019, 374 million of DAH was provided for pandemic preparedness, less than 1% of DAH. Although spending has increased across HIV/AIDS, tuberculosis, and malaria since 2015, spending has not increased in all countries, and outcomes in terms of prevalence, incidence, and per-capita spending have been mixed. The proportion of health spending from pooled sources is expected to increase from 81·6% (81·6–81·7) in 2015 to 83·1% (82·8–83·3) in 2030. Interpretation: Health spending on SDG3 priority areas has increased, but not in all countries, and progress towards meeting the SDG3 targets has been mixed and has varied by country and by target. The evidence on the scale-up of spending and improvements in health outcomes suggest a nuanced relationship, such that increases in spending do not always results in improvements in outcomes. Although countries will probably need more resources to achieve SDG3, other constraints in the broader health system such as inefficient allocation of resources across interventions and populations, weak governance systems, human resource shortages, and drug shortages, will also need to be addressed. Funding: The Bill & Melinda Gates Foundatio
    corecore