3,577 research outputs found
Detecting Topological Order with Ribbon Operators
We introduce a numerical method for identifying topological order in
two-dimensional models based on one-dimensional bulk operators. The idea is to
identify approximate symmetries supported on thin strips through the bulk that
behave as string operators associated to an anyon model. We can express these
ribbon operators in matrix product form and define a cost function that allows
us to efficiently optimize over this ansatz class. We test this method on spin
models with abelian topological order by finding ribbon operators for
quantum double models with local fields and Ising-like terms. In
addition, we identify ribbons in the abelian phase of Kitaev's honeycomb model
which serve as the logical operators of the encoded qubit for the quantum
error-correcting code. We further identify the topologically encoded qubit in
the quantum compass model, and show that despite this qubit, the model does not
support topological order. Finally, we discuss how the method supports
generalizations for detecting nonabelian topological order.Comment: 15 pages, 8 figures, comments welcom
Characterization of complex quantum dynamics with a scalable NMR information processor
We present experimental results on the measurement of fidelity decay under
contrasting system dynamics using a nuclear magnetic resonance quantum
information processor. The measurements were performed by implementing a
scalable circuit in the model of deterministic quantum computation with only
one quantum bit. The results show measurable differences between regular and
complex behaviour and for complex dynamics are faithful to the expected
theoretical decay rate. Moreover, we illustrate how the experimental method can
be seen as an efficient way for either extracting coarse-grained information
about the dynamics of a large system, or measuring the decoherence rate from
engineered environments.Comment: 4pages, 3 figures, revtex4, updated with version closer to that
publishe
Belief propagation algorithm for computing correlation functions in finite-temperature quantum many-body systems on loopy graphs
Belief propagation -- a powerful heuristic method to solve inference problems
involving a large number of random variables -- was recently generalized to
quantum theory. Like its classical counterpart, this algorithm is exact on
trees when the appropriate independence conditions are met and is expected to
provide reliable approximations when operated on loopy graphs. In this paper,
we benchmark the performances of loopy quantum belief propagation (QBP) in the
context of finite-tempereture quantum many-body physics. Our results indicate
that QBP provides reliable estimates of the high-temperature correlation
function when the typical loop size in the graph is large. As such, it is
suitable e.g. for the study of quantum spin glasses on Bethe lattices and the
decoding of sparse quantum error correction codes.Comment: 5 pages, 4 figure
Sexual and marital trajectories and HIV infection among ever-married women in rural Malawi.
OBJECTIVE: To explore how sexual and marital trajectories are associated with HIV infection among ever-married women in rural Malawi. METHODS: Retrospective survey data and HIV biomarker data for 926 ever-married women interviewed in the Malawi Diffusion and Ideational Change Project were used. The associations between HIV infection and four key life course transitions considered individually (age at sexual debut, premarital sexual activity, entry into marriage and marital disruption by divorce or death) were examined. These transitions were then sequenced to construct trajectories that represent the variety of patterns in the data. The association between different trajectories and HIV prevalence was examined, controlling for potentially confounding factors such as age and region. RESULTS: Although each life course transition taken in isolation may be associated with HIV infection, their combined effect appeared to be conditional on the sequence in which they occurred. Although early sexual debut, not marrying one's first sexual partner and having a disrupted marriage each increased the likelihood of HIV infection, their risk was not additive. Women who both delayed sexual debut and did not marry their first partner are, once married, more likely to experience marital disruption and to be HIV-positive. Women who marry their first partner but who have sex at a young age, however, are also at considerable risk. CONCLUSIONS: These findings identify the potential of a life course perspective for understanding why some women become infected with HIV and others do not, as well as the differentials in HIV prevalence that originate from the sequence of sexual and marital transitions in one's life. The analysis suggests, however, the need for further data collection to permit a better examination of the mechanisms that account for variations in life course trajectories and thus in lifetime probabilities of HIV infection
Development of Analytical Models of T- and U-shaped Cantilever-based MEMS Devices for Sensing and Energy Harvesting Applications
Dynamic-mode cantilever-based structures supporting end masses are frequently used as MEMS/NEMS devices in application areas as diverse as chemical/biosensing, atomic force microscopy, and energy harvesting. This paper presents a new analytical solution for the free vibration of a cantilever with a rigid end mass of finite size. The effects of both translational and rotational inertia as well as horizontal eccentricity of the end mass are incorporated into the model. This model is general regarding the end-mass distribution/geometry and is validated here for the commonly encountered geometries of T- and U-shaped cantilevers. Comparisons with 3D FEA simulations and experiments on silicon and organic MEMS are quite encouraging. The new solution gives insight into device behavior, provides an efficient tool for preliminary design, and may be extended in a straightforward manner to account for inherent energy dissipation in the case of organic-based cantilevers
Recommended from our members
Implementation issues in product line scoping
Often product line engineering is treated similar to the waterfall model in traditional software engineering, i.e., the different phases (scoping, analysis, architecting, implementation) are treated as if they could be clearly separated and would follow each other in an ordered fashion. However, in practice strong interactions between the individual phases become apparent. In particular, how implementation is done has a strong impact on economic aspects of the project and thus how to adequately plan it. Hence, assessing these relationships adequately in the beginning has a strong impact on performing a product line project right. In this paper we present a framework that helps in exactly this task. It captures on an abstract level the relationships between scoping information and implementation aspects and thus allows to provide rough guidance on implementation aspects of the project. We will also discuss the application of our framework to a specific industrial project
Nematic-Wetted Colloids in the Isotropic Phase: Pairwise Interaction, Biaxiality and Defects
We calculate the interaction between two spherical colloidal particles
embedded in the isotropic phase of a nematogenic liquid. The surface of the
particles induces wetting nematic coronas that mediate an elastic interaction.
In the weak wetting regime, we obtain exact results for the interaction energy
and the texture, showing that defects and biaxiality arise, although they are
not topologically required. We evidence rich behaviors, including the
possibility of reversible colloidal aggregation and dispersion. Complex
anisotropic self-assembled phases might be formed in dense suspensions.Comment: 4 pages, 6 figure
Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order
Particles dispersed in a liquid crystal above the nematic-isotropic phase
transition are wetted by a surface-induced corona of paranematic order. Such
coronas give rise to pronounced two-particle interactions. In this article, we
report details on the analytical and numerical study of these interactions
published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially
demonstrate how for large particle separations the asymptotic form of a Yukawa
potential arises. We show that the Yukawa potential is a surprisingly good
description for the two-particle interactions down to distances of the order of
the nematic coherence length. Based on this fact, we extend earlier studies on
a temperature induced flocculation transition in electrostatically stabilized
colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa
potential to establish a flocculation diagram for a much larger range of the
electrostatic parameters, namely the surface charge density and the Debye
screening length. As a new feature, a kinetically stabilized dispersion close
to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for
publication in Phys. Rev.
Robust polarization-based quantum key distribution over collective-noise channel
We present two polarization-based protocols for quantum key distribution. The
protocols encode key bits in noiseless subspaces or subsystems, and so can
function over a quantum channel subjected to an arbitrary degree of collective
noise, as occurs, for instance, due to rotation of polarizations in an optical
fiber. These protocols can be implemented using only entangled photon-pair
sources, single-photon rotations, and single-photon detectors. Thus, our
proposals offer practical and realistic alternatives to existing schemes for
quantum key distribution over optical fibers without resorting to
interferometry or two-way quantum communication, thereby circumventing,
respectively, the need for high precision timing and the threat of Trojan horse
attacks.Comment: Minor changes, added reference
Drag on particles in a nematic suspension by a moving nematic-isotropic interface
We report the first clear demonstration of drag on colloidal particles by a moving nematic-isotropic
interface. The balance of forces explains our observation of periodic, strip-like structures that are produced by the movement of these particles
- …
