93 research outputs found
Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals
This paper studies nonparametric estimation of conditional moment models in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators which are minimizers of a penalized empirical minimum distance criterion over a collection of sieve spaces that are dense in the infinite dimensional function parameter space. Some of the PSMD procedures use slowly growing finite dimensional sieves with flexible penalties or without any penalty; some use large dimensional sieves with lower semicompact and/or convex penalties. We establish their consistency and the convergence rates in Banach space norms (such as a sup-norm or a root mean squared norm), allowing for possibly non-compact infinite dimensional parameter spaces. For both mildly and severely ill-posed nonlinear inverse problems, our convergence rates in Hilbert space norms (such as a root mean squared norm) achieve the known minimax optimal rate for the nonparametric mean IV regression. We illustrate the theory with a nonparametric additive quantile IV regression. We present a simulation study and an empirical application of estimating nonparametric quantile IV Engel curves.Nonlinear ill-posed inverse, Penalized sieve minimum distance, Modulus of continuity, Convergence rate, Nonparametric additive quantile IV, Quantile IV Engel curves
Towards a General Large Sample Theory for Regularized Estimators
We present a general framework for studying regularized estimators; such
estimators are pervasive in estimation problems wherein "plug-in" type
estimators are either ill-defined or ill-behaved. Within this framework, we
derive, under primitive conditions, consistency and a generalization of the
asymptotic linearity property. We also provide data-driven methods for choosing
tuning parameters that, under some conditions, achieve the aforementioned
properties. We illustrate the scope of our approach by presenting a wide range
of applications
Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals
This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (Θ) and unknown functions (h)of endogenous variables. We show that: (1) the penalized sieve minimum distance(PSMD) estimator (ˆΘ, ˆh) can simultaneously achieve root-n asymptotic normality of ˆΘ and nonparametric optimal convergence rate of ˆh, allowing for noncompact function parameter spaces; (2) a simple weighted bootstrap procedure consistently estimates the limiting distribution of the PSMD ˆΘ; (3) the semiparametric efficiency bound formula of Ai and Chen (2003) remains valid for conditional models with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bound; (4) the centered, profiled optimally weighted PSMD criterion is asymptotically chi-square distributed. We illustrate our theories using a partially linear quantile instrumental variables (IV) regression, a Monte Carlo study, and an empirical estimation of the shape-invariant quantile IV Engel curves. This is an updated version of CWP09/08.
Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals
For semi/nonparametric conditional moment models containing unknown parametric components θ and unknown functions of endogenous variables (h), Newey and Powell (2003) and Ai and Chen (2003) propose sieve minimum distance (SMD) estimation of (θ, h) and derive the large sample properties. This paper greatly extends their results by establishing the followings: (1) The penalized SMD (PSMD) estimator can simultaneously achieve root-n asymptotic normality of the parametric components and nonparametric optimal convergence rate of the nonparametric components, allowing for models with possibly nonsmooth residuals and/or noncompact infinite dimensional parameter spaces. (2) A simple weighted bootstrap procedure can consistently estimate the limiting distribution of the PSMD estimator of the parametric components. (3) The semiparametric efficiency bound results of Ai and Chen (2003) remain valid for conditional models with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bounds. (4) The profiled optimally weighted PSMD criterion is asymptotically Chi-square distributed, which implies an alternative consistent estimation of confidence region of the efficient PSMD estimator of θ. All the theoretical results are stated in terms of any consistent nonparametric estimator of conditional mean functions. We illustrate our general theories using a partially linear quantile instrumental variables regression, a Monte Carlo study, and an empirical estimation of the shape-invariant quantile Engel curves with endogenous total expenditure.
Estimation of nonparametric conditional moment models with possibly nonsmooth moments
This paper studies nonparametric estimation of conditional moment models in which the residual functions could be nonsmooth with respect to the unknown functions of endogenous variables. It is a problem of nonparametric nonlinear instrumental variables (IV) estimation, and a difficult nonlinear ill-posed inverse problem with an unknown operator. We first propose a penalized sieve minimum distance (SMD) estimator of the unknown functions that are identified via the conditional moment models. We then establish its consistency and convergence rate (in strong metric), allowing for possibly non-compact function parameter spaces, possibly non-compact finite or infinite dimensional sieves with flexible lower semicompact or convex penalty, or finite dimensional linear sieves without penalty. Under relatively low-level sufficient conditions, and for both mildly and severely ill-posed problems, we show that the convergence rates for the nonlinear ill-posed inverse problems coincide with the known minimax optimal rates for the nonparametric mean IV regression. We illustrate the theory by two important applications: root-n asymptotic normality of the plug-in penalized SMD estimator of a weighted average derivative of a nonparametric nonlinear IV regression, and the convergence rate of a nonparametric additive quantile IV regression. We also present a simulation study and an empirical estimation of a system of nonparametric quantile IV Engel curves.
Estimation of Nonparametric Conditional Moment Models with Possibly Nonsmooth Moments
This paper studies nonparametric estimation of conditional moment models in which the residual functions could be nonsmooth with respect to the unknown functions of endogenous variables. It is a problem of nonparametric nonlinear instrumental variables (IV) estimation, and a difficult nonlinear ill-posed inverse problem with an unknown operator. We first propose a penalized sieve minimum distance (SMD) estimator of the unknown functions that are identified via the conditional moment models. We then establish its consistency and convergence rate (in strong metric), allowing for possibly non-compact function parameter spaces, possibly non-compact finite or infinite dimensional sieves with flexible lower semicompact or convex penalty, or finite dimensional linear sieves without penalty. Under relatively low-level sufficient conditions, and for both mildly and severely ill-posed problems, we show that the convergence rates for the nonlinear ill-posed inverse problems coincide with the known minimax optimal rates for the nonparametric mean IV regression. We illustrate the theory by two important applications: root-n asymptotic normality of the plug-in penalized SMD estimator of a weighted average derivative of a nonparametric nonlinear IV regression, and the convergence rate of a nonparametric additive quantile IV regression. We also present a simulation study and an empirical estimation of a system of nonparametric quantile IV Engel curves.Nonsmooth residuals, Nonlinear ill-posed inverse, Penalized sieve minimum distance, Modulus of continuity, Average derivative of a nonparametric nonlinear IV regression, Non-parametric additive quantile IV regression
Efficient Estimation of Semiparametric Conditional Moment Models with Possibly Nonsmooth Residuals
This paper considers semiparametric efficient estimation of conditional moment models with possibly nonsmooth residuals in unknown parametric components (theta) and unknown functions (h) of endogenous variables. We show that: (1) the penalized sieve minimum distance (PSMD) estimator (theta\hat,h\hat) can simultaneously achieve root-n asymptotic normality of theta\hat and nonparametric optimal convergence rate of h\hat, allowing for noncompact function parameter spaces; (2) a simple weighted bootstrap procedure consistently estimates the limiting distribution of the PSMD theta\hat; (3) the semiparametric efficiency bound formula of Ai and Chen (2003) remains valid for conditional models with nonsmooth residuals, and the optimally weighted PSMD estimator achieves the bound; (4) the centered, profiled optimally weighted PSMD criterion is asymptotically chi-square distributed. We illustrate our theories using a partially linear quantile instrumental variables (IV) regression, a Monte Carlo study, and an empirical estimation of the shape-invariant quantile IV Engel curves.Penalized sieve minimum distance, Nonsmooth generalized residuals, Nonlinear nonparametric endogeneity, Weighted bootstrap, Semiparametric efficiency, Confidence region, Partially linear quantile IV regression, Shape-invariant quantile IV Engel curves
- …
