657 research outputs found
Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature
We present a high-resolution microwave spectrometer to measure the
frequency-dependent complex conductivity of a superconducting thin film near
the critical temperature. The instrument is based on a broadband measurement of
the complex reflection coefficient, , of a coaxial transmission
line, which is terminated to a thin film sample with the electrodes in a
Corbino disk shape. In the vicinity of the critical temperature, the standard
calibration technique using three known standards fails to extract the strong
frequency dependence of the complex conductivity induced by the superconducting
fluctuations. This is because a small unexpected difference between the phase
parts of for a short and load standards gives rise to a large
error in the detailed frequency dependence of the complex conductivity near the
superconducting transition. We demonstrate that a new calibration procedure
using the normal-state conductivity of a sample as a load standard resolves
this difficulty. The high quality performance of this spectrometer, which
covers the frequency range between 0.1 GHz and 10 GHz, the temperature range
down to 10 K, and the magnetic field range up to 1 T, is illustrated by the
experimental results on several thin films of both conventional and high
temperature superconductors.Comment: 13 pages, 14 figure
Radio-frequency operation of a double-island single-electron transistor
We present results on a double-island single-electron transistor (DISET)
operated at radio-frequency (rf) for fast and highly sensitive detection of
charge motion in the solid state. Using an intuitive definition for the charge
sensitivity, we compare a DISET to a conventional single-electron transistor
(SET). We find that a DISET can be more sensitive than a SET for identical,
minimum device resistances in the Coulomb blockade regime. This is of
particular importance for rf operation where ideal impedance matching to 50 Ohm
transmission lines is only possible for a limited range of device resistances.
We report a charge sensitivity of 5.6E-6 e/sqrt(Hz) for a rf-DISET, together
with a demonstration of single-shot detection of small (<=0.1e) charge signals
on microsecond timescales.Comment: 6 pages, 6 figure
Interaction-induced harmonic frequency mixing in quantum dots
We show that harmonic frequency mixing in quantum dots coupled to two leads
under the influence of time-dependent voltages of different frequency is
dominated by interaction effects. This offers a unique and direct spectroscopic
tool to access correlations, and holds promise for efficient frequency mixing
in nano-devices. Explicit results are provided for an Anderson dot and for a
molecular level with phonon-mediated interactions.Comment: 4 pages, 2 figures, accepted for publication in Phys.Rev.Let
Non-degenerate, three-wave mixing with the Josephson ring modulator
The Josephson ring modulator (JRM) is a device, based on Josephson tunnel
junctions, capable of performing non-degenerate mixing in the microwave regime
without losses. The generic scattering matrix of the device is calculated by
solving coupled quantum Langevin equations. Its form shows that the device can
achieve quantum-limited noise performance both as an amplifier and a mixer.
Fundamental limitations on simultaneous optimization of performance metrics
like gain, bandwidth and dynamic range (including the effect of pump depletion)
are discussed. We also present three possible integrations of the JRM as the
active medium in a different electromagnetic environment. The resulting
circuits, named Josephson parametric converters (JPC), are discussed in detail,
and experimental data on their dynamic range are found to be in good agreement
with theoretical predictions. We also discuss future prospects and requisite
optimization of JPC as a preamplifier for qubit readout applications.Comment: 21 pages, 16 figures, 4 table
Experimental Demonstration of a Structured Material with Extreme Effective Parameters at Microwaves
Following our recent theoretical studies [M. G. Silveirinha, C. A. Fernandes,
Phys. Rev. B, 78, 033108, 2008], it is experimentally verified that an array of
crossed metallic wires may behave as a nonresonant material with extremely
large index of refraction at microwaves, and may enable the realization of
ultra-subwavelength waveguides.Comment: accepted for publication in Applied Physics Letters (in press).
Applied Physics Letters (in press) (2008
Analysis of broadband microwave conductivity and permittivity measurements of semiconducting materials
We perform broadband phase sensitive measurements of the reflection
coefficient from 45 MHz up to 20 GHz employing a vector network analyzer with a
2.4 mm coaxial sensor which is terminated by the sample under test. While the
material parameters (conductivity and permittivity) can be easily extracted
from the obtained impedance data if the sample is metallic, no direct solution
is possible if the material under investigation is an insulator. Focusing on
doped semiconductors with largely varying conductivity, here we present a
closed calibration and evaluation procedure for frequencies up to 5 GHz, based
on the rigorous solution for the electromagnetic field distribution inside the
sample combined with the variational principle; basically no limiting
assumptions are necessary. A simple static model based on the electric current
distribution proves to yield the same frequency dependence of the complex
conductivity up to 1 GHz. After a critical discussion we apply the developed
method to the hopping transport in Si:P at temperature down to 1 K.Comment: 9 pages, 10 figures, accepted for publication in the Journal of
Applied Physic
Sensitivity of spin-torque diodes for frequency-tunable resonant microwave detection
We calculate the efficiency with which magnetic tunnel junctions can be used
as resonant detectors of incident microwave radiation via the spin-torque diode
effect. The expression we derive is in good agreement with the sensitivities we
measure for MgO-based magnetic tunnel junctions with an extended (unpatterned)
magnetic pinned layer. However, the measured sensitivities are reduced below
our estimate for a second set of devices in which the pinned layer is a
patterned synthetic antiferromagnet (SAF). We suggest that this reduction may
be due to an undesirable coupling between the magnetic free layer and one of
the magnetic layers within the etched SAF. Our calculations suggest that
optimized tunnel junctions should achieve sensitivities for resonant detection
exceeding 10,000 mV/mW.Comment: 17 pages, 2 figure
Reflection-Free One-Way Edge Modes in a Gyromagnetic Photonic Crystal
We point out that electromagnetic one-way edge modes analogous to quantum
Hall edge states, originally predicted by Raghu and Haldane in 2D gyroelectric
photonic crystals possessing Dirac point-derived bandgaps, can appear in more
general settings. In particular, we show that the TM modes in a gyromagnetic
photonic crystal can be formally mapped to electronic wavefunctions in a
periodic electromagnetic field, so that the only requirement for the existence
of one-way edge modes is that the Chern number for all bands below a gap is
non-zero. In a square-lattice gyromagnetic Yttrium-Iron-Garnet photonic crystal
operating at microwave frequencies, which lacks Dirac points, time-reversal
breaking is strong enough that the effect should be easily observable. For
realistic material parameters, the edge modes occupy a 10% band gap. Numerical
simulations of a one-way waveguide incorporating this crystal show 100%
transmission across strong defects, such as perfect conductors several lattice
constants wide, larger than the width of the waveguide.Comment: 4 pages, 3 figures (Figs. 1 and 2 revised.
Model for monitoring of a charge qubit using a radio-frequency quantum point contact including experimental imperfections
The extension of quantum trajectory theory to incorporate realistic
imperfections in the measurement of solid-state qubits is important for quantum
computation, particularly for the purposes of state preparation and
error-correction as well as for readout of computations. Previously this has
been achieved for low-frequency (dc) weak measurements. In this paper we extend
realistic quantum trajectory theory to include radio frequency (rf) weak
measurements where a low-transparency quantum point contact (QPC), coupled to a
charge qubit, is used to damp a classical oscillator circuit. The resulting
realistic quantum trajectory equation must be solved numerically. We present an
analytical result for the limit of large dissipation within the oscillator
(relative to the QPC), where the oscillator slaves to the qubit. The rf+dc mode
of operation is considered. Here the QPC is biased (dc) as well as subjected to
a small-amplitude sinusoidal carrier signal (rf). The rf+dc QPC is shown to be
a low-efficiency charge-qubit detector, that may nevertheless be higher than
the dc-QPC (which is subject to 1/f noise).Comment: 12 pages, 2 colour figures. v3 is published version (minor changes
since v2
- …
