294 research outputs found
The -cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering
We discuss a small-scale experiment, called -cleus, for the first
detection of coherent neutrino-nucleus scattering by probing nuclear-recoil
energies down to the 10 eV-regime. The detector consists of low-threshold
CaWO and AlO calorimeter arrays with a total mass of about 10 g and
several cryogenic veto detectors operated at millikelvin temperatures.
Realizing a fiducial volume and a multi-element target, the detector enables
active discrimination of , neutron and surface backgrounds. A first
prototype AlO device, operated above ground in a setup without
shielding, has achieved an energy threshold of eV and further
improvements are in reach. A sensitivity study for the detection of coherent
neutrino scattering at nuclear power plants shows a unique discovery potential
(5) within a measuring time of weeks. Furthermore, a site
at a thermal research reactor and the use of a radioactive neutrino source are
investigated. With this technology, real-time monitoring of nuclear power
plants is feasible.Comment: 14 pages, 19 figure
Gram-scale cryogenic calorimeters for rare-event searches
The energy threshold of a cryogenic calorimeter can be lowered by reducing
its size. This is of importance since the resulting increase in signal rate
enables new approaches in rare-event searches, including the detection of MeV
mass dark matter and coherent scattering of reactor or solar neutrinos. A
scaling law for energy threshold vs. detector size is given. We analyze the
possibility of lowering the threshold of a gram-scale cryogenic calorimeter to
the few eV regime. A prototype 0.5 g AlO device achieved an energy
threshold of () eV, the lowest value reported for a macroscopic
calorimeter.Comment: 7 pages, 8 figure
Results from 730 kg days of the CRESST-II Dark Matter Search
The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via
elastic scattering off nuclei in CaWO crystals, completed 730 kg days of
data taking in 2011. We present the data collected with eight detector modules,
each with a two-channel readout; one for a phonon signal and the other for
coincidently produced scintillation light. The former provides a precise
measure of the energy deposited by an interaction, and the ratio of
scintillation light to deposited energy can be used to discriminate different
types of interacting particles and thus to distinguish possible signal events
from the dominant backgrounds. Sixty-seven events are found in the acceptance
region where a WIMP signal in the form of low energy nuclear recoils would be
expected. We estimate background contributions to this observation from four
sources: 1) "leakage" from the e/\gamma-band 2) "leakage" from the
\alpha-particle band 3) neutrons and 4) Pb-206 recoils from Po-210 decay. Using
a maximum likelihood analysis, we find, at a high statistical significance,
that these sources alone are not sufficient to explain the data. The addition
of a signal due to scattering of relatively light WIMPs could account for this
discrepancy, and we determine the associated WIMP parameters.Comment: 17 pages, 13 figure
The CRESST Experiment: Recent Results and Prospects
The CRESST experiment seeks hypothetical WIMP particles that could account
for the bulk of dark matter in the Universe. The detectors are cryogenic
calorimeters in which WIMPs would scatter elastically on nuclei, releasing
phonons. The first phase of the experiment has successfully deployed several
262 g sapphire devices in the Gran Sasso underground laboratories. A main
source of background has been identified as microscopic mechanical fracturing
of the crystals, and has been eliminated, improving the background rate by up
to three orders of magnitude at low energies, leaving a rate close to one count
per day per kg and per keV above 10 keV recoil energy. This background now
appears to be dominated by radioactivity, and future CRESST scintillating
calorimeters which simultaneously measure light and phonons will allow
rejection of a great part of it.Comment: To appear in the proceedings of the CAPP2000 Conference, Verbier,
Switzerland, July, 2000 (eds J. Garcia-Bellido, R. Durrer, and M.
Shaposhnikov
The CRESST II Dark Matter Search
Direct Dark Matter detection with cryodetectors is briefly discussed, with
particular mention of the possibility of the identification of the recoil
nucleus. Preliminary results from the CREEST II Dark Matter search, with 730
kg-days of data, are presented. Major backgrounds and methods of identifying
and dealing with them are indicated.Comment: Talk at DSU workshop, ITP Beijing, Oct. 2011. 9 figures, 2 table
A detector module with highly efficient surface-alpha event rejection operated in CRESST-II Phase 2
The cryogenic dark matter experiment CRESST-II aims at the direct detection
of WIMPs via elastic scattering off nuclei in scintillating CaWO crystals.
We present a new, highly improved, detector design installed in the current run
of CRESST-II Phase 2 with an efficient active rejection of surface-alpha
backgrounds. Using CaWO sticks instead of metal clamps to hold the target
crystal, a detector housing with fully-scintillating inner surface could be
realized. The presented detector (TUM40) provides an excellent threshold of
keV and a resolution of keV (at
2.60keV). With significantly reduced background levels, TUM40 sets
stringent limits on the spin-independent WIMP-nucleon scattering cross section
and probes a new region of parameter space for WIMP masses below
3GeV/c. In this paper, we discuss the novel detector design and the
surface-alpha event rejection in detail.Comment: 9 pages, 6 figure
- …
