6,330 research outputs found

    Lithium-7 surface abundance in pre-MS stars. Testing theory against clusters and binary systems

    Full text link
    The disagreement between theoretical predictions and observations for surface lithium abundance in stars is a long-standing problem, which indicates that the adopted physical treatment is still lacking in some points. However, thanks to the recent improvements in both models and observations, it is interesting to analyse the situation to evaluate present uncertainties. We present a consistent and quantitative analysis of the theoretical uncertainties affecting surface lithium abundance in the current generation of models. By means of an up-to-date and well tested evolutionary code, FRANEC, theoretical errors on surface 7Li abundance predictions, during the pre-main sequence (pre-MS) and main sequence (MS) phases, are discussed in detail. Then, the predicted surface 7Li abundance was tested against observational data for five open clusters, namely Ic 2602, \alpha Per, Blanco1, Pleiades, and Ngc 2516, and for four detached double-lined eclipsing binary systems. Stellar models for the aforementioned clusters were computed by adopting suitable chemical composition, age, and mixing length parameter for MS stars determined from the analysis of the colour-magnitude diagram of each cluster. We restricted our analysis to young clusters, to avoid additional uncertainty sources such as diffusion and/or radiative levitation efficiency. We confirm the disagreement, within present uncertainties, between theoretical predictions and 7Li observations for standard models. However, we notice that a satisfactory agreement with observations for 7Li abundance in both young open clusters and binary systems can be achieved if a lower convection efficiency is adopted during the pre-MS phase with respect to the MS one.Comment: 10 pages, 5 figures. Accepted for publication in A&

    Dust photophoretic transport around a T Tauri star: Implications for comets composition

    Get PDF
    There is a growing body of evidences for the presence of crystalline material in comets. These crystals are believed to have been annealed in the inner part of the proto-solar nebula, while comets should have been formed in the outer regions. Several transport processes have been proposed to reconcile these two facts; among them a migration driven by photophoresis. The primarily goal of this work is to assess whether disk irradiation by a Pre-Main Sequence star would influence the photophoretic transport. To do so, we have implemented an evolving 1+1D model of an accretion disk, including advanced numerical techniques, undergoing a time-dependent irradiation, consistent with the evolution of the proto-Sun along the Pre-Main Sequence. The photophoresis is described using a formalism introduced in several previous works. Adopting the opacity prescription used in these former studies, we find that the disk irradiation enhances the photophoretic transport: the assumption of a disk central hole of several astronomical units in radius is no longer strictly required, whereas the need for an ad hoc introduction of photoevaporation is reduced. However, we show that a residual trail of small particles could annihilate the photophoretic driven transport via their effect on the opacity. We have also confirmed that the thermal conductivity of transported aggregates is a crucial parameter which could limit or even suppress the photophoretic migration and generate several segregation effects

    Theoretical uncertainties on the radius of low- and very-low mass stars

    Get PDF
    We performed an analysis of the main theoretical uncertainties that affect the radius of low- and very-low mass-stars predicted by current stellar models. We focused on stars in the mass range 0.1-1Msun, on both the zero-age main-sequence (ZAMS) and on 1, 2 and 5 Gyr isochrones. First, we quantified the impact on the radius of the uncertainty of several quantities, namely the equation of state, radiative opacity, atmospheric models, convection efficiency and initial chemical composition. Then, we computed the cumulative radius error stripe obtained by adding the radius variation due to all the analysed quantities. As a general trend, the radius uncertainty increases with the stellar mass. For ZAMS structures the cumulative error stripe of very-low mass stars is about ±2\pm 2 and ±3\pm 3 percent, while at larger masses it increases up to ±4\pm 4 and ±5\pm 5 percent. The radius uncertainty gets larger and age dependent if isochrones are considered, reaching for M1M\sim 1Msun about +12(15)+12(-15) percent at an age of 5 Gyr. We also investigated the radius uncertainty at a fixed luminosity. In this case, the cumulative error stripe is the same for both ZAMS and isochrone models and it ranges from about ±4\pm 4 percent to +7+7 and +9+9(5-5) percent. We also showed that the sole uncertainty on the chemical composition plays an important role in determining the radius error stripe, producing a radius variation that ranges between about ±1\pm 1 and ±2\pm 2 percent on ZAMS models with fixed mass and about ±3\pm 3 and ±5\pm 5 percent at a fixed luminosity.Comment: 18 pages, 20 figures, 1 table; accepted for publication in MNRA

    Effect of planet ingestion on low-mass stars evolution: the case of 2MASS J08095427--4721419 star in the Gamma Velorum cluster

    Get PDF
    We analysed the effects of planet ingestion on the characteristics of a pre-MS star similar to the Gamma Velorum cluster member 2MASS J08095427--4721419 (#52). We discussed the effects of changing the age t0t_0 at which the accretion episode occurs, the mass of the ingested planet and its chemical composition. We showed that the mass of the ingested planet required to explain the current [Fe/H]^#52 increases by decreasing the age t0t_0 and/or by decreasing the Iron content of the accreted matter. We compared the predictions of a simplified accretion method -- where only the variation of the surface chemical composition is considered -- with that of a full accretion model that properly accounts for the modification of the stellar structure. We showed that the two approaches result in different convective envelope extension which can vary up to 10 percent. We discussed the impact of the planet ingestion on a stellar model in the colour-magnitude diagram, showing that a maximum shift of about 0.06 dex in the colour and 0.07 dex in magnitude are expected and that such variations persist even much later the accretion episode. We also analysed the systematic bias in the stellar mass and age inferred by using a grid of standard non accreting models to recover the characteristics of an accreting star. We found that standard non accreting models can safely be adopted for mass estimate, as the bias is <= 6 percent, while much more caution should be used for age estimate where the differences can reach about 60 percent.Comment: Accepted for publication in MNRAS. 13 pages, 3 tables, 9 figure

    Band topology and quantum spin Hall effect in bilayer graphene

    Full text link
    We consider bilayer graphene in the presence of spin orbit coupling, to assess its behavior as a topological insulator. The first Chern number nn for the energy bands of single and bilayer graphene is computed and compared. It is shown that for a given valley and spin, nn in a bilayer is doubled with respect to the monolayer. This implies that bilayer graphene will have twice as many edge states as single layer graphene, which we confirm with numerical calculations and analytically in the case of an armchair terminated surface. Bilayer graphene is a weak topological insulator, whose surface spectrum is susceptible to gap opening under spin-mixing perturbations. We also assess the stability of the associated topological bulk state of bilayer graphene under various perturbations. Finally, we consider an intermediate situation in which only one of the two layers has spin orbit coupling, and find that although individual valleys have non-trivial Chern numbers, the spectrum as a whole is not gapped, so that the system is not a topological insulator.Comment: 9 pages. 9 figures include

    Strain-induced bound states in transition-metal dichalcogenide bubbles

    Full text link
    This is an author-created, un-copyedited version of an article published in 2D Materials. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/10.1088/2053-1583/ab0113We theoretically study the formation of single-particle bound states confined by strain at the center of bubbles in monolayers of transition-metal dichalcogenides (TMDs). Bubbles ubiquitously form in two-dimensional crystals on top of a substrate by the competition between van der Waals forces and the hydrostatic pressure exerted by trapped fluid. This leads to strong strain at the center of the bubble that reduces the bangap locally, creating potential wells for the electrons that confine states inside. We simulate the spectrum versus the bubble radius for the four semiconducting group VI TMDs, MoS2, WSe2, WS2 and MoSe2, and find an overall Fock-Darwin spectrum of bubble bound states, characterised by small deviations compatible with Berry curvature effects. We analyse the density of states, the state degeneracies, orbital structure and optical transition rules. Our results show that elastic bubbles in these materials are remarkably efficient at confining photocarriersWe acknowledge funding from the Graphene Flagship, contract CNECTICT-604391, from the Comunidad de Madrid through Grant MAD2D-CM, S2013/MIT-3007, from the Spanish Ministry of Economy and Competitiveness through Grants No. RYC-2011-09345, RYC-2016-20663, FIS2015-65706-P, FIS2016-80434-P (AEI/FEDER, EU) and the María de Maeztu Programme for Units of Excellence in R&D (MDM-2014-0377

    Impact of internal bremsstrahlung on the detection of gamma-rays from neutralinos

    Full text link
    We present a detailed study of the effect of internal bremsstrahlung photons in the context of the minimal supersymmetric standard models and their impact on gamma-ray dark matter annihilation searches. We find that although this effect has to be included for the correct evaluation of fluxes of high energy photons from neutralino annihilation, its contribution is relevant only in models and at energies where the lines contribution is dominant over the secondary photons. Therefore, we find that the most optimistic supersymmetric scenarios for dark matter detection do not change significantly when including the internal bremsstrahlung. As an example, we review the gamma-ray dark matter detection prospects of the Draco dwarf spheroidal galaxy for the MAGIC stereoscopic system and the CTA project. Though the flux of high energy photons is enhanced by an order of magnitude in some regions of the parameter space, the expected fluxes are still much below the sensitivity of the instruments.Comment: 5 pages, twocolumn format, 3 figures:3 references added, accepted as Brief Report in PR
    corecore