404 research outputs found
The decline and rise of neighbourhoods: the importance of neighbourhood governance
There is a substantial literature on the explanation of neighbourhood change. Most of this literature concentrates on identifying factors and developments behind processes of decline. This paper reviews the literature, focusing on the identification of patterns of neighbourhood change, and argues that the concept of neighbourhood governance is a missing link in attempts to explain these patterns. Including neighbourhood governance in the explanations of neighbourhood change and decline will produce better explanatory models and, finally, a better view about what is actually steering neighbourhood change
Dynamic Passive Dosing for Studying the Biotransformation of Hydrophobic Organic Chemicals: Microbial Degradation as an Example
B cell receptor expression level determines the fate of developing B lymphocytes: Receptor editing versus selection
Polypeptide modification: an improved proglycinin design to stabilise oil-in-water emulsions
β-Conglycinin and glycinin are soybean major seed storage proteins. Previous studies have shown that adding the extension region of β-conglycinin α subunit improves the emulsifying properties of proglycinin and confers more favourable characteristics than fusing the extension region of β-conglycinin α' subunit or the hypervariable regions (A4IV) of glycinin A1aB1b subunit. To evaluate the polypeptide properties, we designed mutants of A1aB1b subunits fused with truncated versions of A4IV (A4IVcut), α (αcut) or α' (α'cut) extension regions lacking the C-terminus 25 or 31 residues (A4IVC25, αC25 or α'C31), and also A4IVcut and α'cut with αC25 residues added (A4IVcut-αC25 and α'cut-αC25). All the modified proteins displayed conformations similar to the wild type. With good solubilities, the emulsion properties of the modified proteins were much better at ionic strength μ = 0.08 than at μ = 0.5. The modified A1aB1bαcut and A1aB1bα'cut showed poorer emulsion properties than those of A1aB1bα and A1aB1bα'. Replacing the hydrophobic A4IVC25 region of A1aB1bA4IV with hydrophilic αC25 created A1aB1bA4IVcut-αC25, which had the best emulsion stability among these proglycinin mutants. We found that addition of αC25 improves the emulsifying properties of two C-terminally truncated proglycinin variants, thereby illustrating its potential general utility. Our investigation showed that in order to improve the emulsifying ability and emulsion stability of a globular protein, the introduced polypeptide should (i) be highly hydrophilic, (ii) consist of multiple hydrophobic-strong hydrophilic regions comprising at least two alpha helixes, (iii) harbour a terminal α-helix at the end of the C-terminus and (iv) have properties similar to those of αC25
Reproducibility and reuse of adaptive immune receptor repertoire data
High-throughput sequencing (HTS) of immunoglobulin (B-cell receptor, antibody) and T-cell receptor repertoires has increased dramatically since the technique was introduced in 2009 (1-3). This experimental approach explores the maturation of the adaptive immune system and its response to antigens, pathogens, and disease conditions in exquisite detail. It holds significant promise for diagnostic and therapy-guiding applications. New technology often spreads rapidly, sometimes more rapidly than the understanding of how to make the products of that technology reliable, reproducible, or usable by others. As complex technologies have developed, scientific communities have come together to adopt common standards, protocols, and policies for generating and sharing data sets, such as the MIAME protocols developed for microarray experiments. The Adaptive Immune Receptor Repertoire (AIRR) Community formed in 2015 to address similar issues for HTS data of immune repertoires. The purpose of this perspective is to provide an overview of the AIRR Community\u27s founding principles and present the progress that the AIRR Community has made in developing standards of practice and data sharing protocols. Finally, and most important, we invite all interested parties to join this effort to facilitate sharing and use of these powerful data sets ([email protected])
ImmuneDB, a Novel Tool for the Analysis, Storage, and Dissemination of Immune Repertoire Sequencing Data
ImmuneDB is a system for storing and analyzing high-throughput immune receptor sequencing data. Unlike most existing tools, which utilize flat-files, ImmuneDB stores data in a well-structured MySQL database, enabling efficient data queries. It can take raw sequencing data as input and annotate receptor gene usage, infer clonotypes, aggregate results, and run common downstream analyses such as calculating selection pressure and constructing clonal lineages. Alternatively, pre-annotated data can be imported and analyzed data can be exported in a variety of common Adaptive Immune Receptor Repertoire (AIRR) file formats. To validate ImmuneDB, we compare its results to those of another pipeline, MiXCR. We show that the biological conclusions drawn would be similar with either tool, while ImmuneDB provides the additional benefits of integrating other common tools and storing data in a database. ImmuneDB is freely available on GitHub at https://github.com/arosenfeld/immunedb, on PyPi at https://pypi.org/project/ImmuneDB, and a Docker container is provided at https://hub.docker.com/r/arosenfeld/immunedb. Full documentation is available at http://immunedb.com
- …
