322 research outputs found

    Coping Ability of Medical and Nursing Students: A Cause of Concern

    Get PDF
    Background: Medical students today are subject to a variety of stress; academic, social, emotional or stress in the form of affliction of health during their stay at medical school. The physiological response to these depends on various factors including their inherent coping abilities. This study was designed to examine the coping ability of medical and nursing students at the time of admission to medical school. Materials and Methods: 42 medical and 34 nursing students volunteered for the study. They were administered the BAI questionnaire and classified as good and poor adjusters based on their score. Results: The study revealed an unsatisfactory overall coping ability to be prevalent among medical and nursing students. Conclusion: This study showed that there is a need for orientation and counselling of medical and nursing students at the start of college

    Bio-nanotechnology application in wastewater treatment

    Get PDF
    The nanoparticles have received high interest in the field of medicine and water purification, however, the nanomaterials produced by chemical and physical methods are considered hazardous, expensive, and leave behind harmful substances to the environment. This chapter aimed to focus on green-synthesized nanoparticles and their medical applications. Moreover, the chapter highlighted the applicability of the metallic nanoparticles (MNPs) in the inactivation of microbial cells due to their high surface and small particle size. Modifying nanomaterials produced by green-methods is safe, inexpensive, and easy. Therefore, the control and modification of nanoparticles and their properties were also discussed

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Cardiovascular risk profile and management of atrial fibrillation in India: Real world data from RealiseAF survey

    Get PDF
    BACKGROUND: Atrial fibrillation (AF) is the most common sustained arrhythmia with high risk for many cardiovascular (CV) complications. Adherence to recommended management guidelines is important to avoid complications. In India, there is little knowledge on how AF is managed in real world. METHODS: This is a cross-sectional study of patients in India enrolled in RealiseAF survey between February 2010 and March 2010 with a diagnosis of AF within the last 12 months. RESULTS: From 15 centers, 301 patients {mean age 59.9 years (14.4); 52.5% males} were recruited. AF was controlled in 50% of patients with 77 (26.7%) in sinus rhythm and 67 (23.3%) with heart rate <80beats/min. Hypertension (50.8%), valvular heart disease (40.7%), heart failure (25.9%), and diabetes (20.4%) were the most common underlying CV diseases. Increased risk for stroke (CHADS2 score≥2) was present in 36.6%. Most of the patients (85%) were symptomatic. AF was paroxysmal, persistent, and permanent in 28.7%, 22.7%, and 34.3% respectively. In 14%, AF was diagnosed as first episode. Forty-six percent of patients had rate control, 35.2% rhythm control, 0.3% both strategies, and 18.4% received no therapy for AF before the visit. At the end of the visit, adoption to rate control strategy increased to 52.3% and patients with no therapy decreased to 7%. CONCLUSION: AF in India is not adequately controlled. Concomitant CV risk factors and risk of stroke are high. The study underscores the need for improved adoption of guideline-directed management for optimal control of AF and reducing the risk of stroke

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Dendritic Cells and Hepatocytes Use Distinct Pathways to Process Protective Antigen from Plasmodium in vivo

    Get PDF
    Malaria-protective CD8+ T cells specific for the circumsporozoite (CS) protein are primed by dendritic cells (DCs) after sporozoite injection by infected mosquitoes. The primed cells then eliminate parasite liver stages after recognizing the CS epitopes presented by hepatocytes. To define the in vivo processing of CS by DCs and hepatocytes, we generated parasites carrying a mutant CS protein containing the H-2Kb epitope SIINFEKL, and evaluated the T cell response using transgenic and mutant mice. We determined that in both DCs and hepatocytes CS epitopes must reach the cytosol and use the TAP transporters to access the ER. Furthermore, we used endosomal mutant (3d) and cytochrome c treated mice to address the role of cross-presentation in the priming and effector phases of the T cell response. We determined that in DCs, CS is cross-presented via endosomes while, conversely, in hepatocytes protein must be secreted directly into the cytosol. This suggests that the main targets of protective CD8+ T cells are parasite proteins exported to the hepatocyte cytosol. Surprisingly, however, secretion of the CS protein into hepatocytes was not dependent upon parasite-export (Pexel/VTS) motifs in this protein. Together, these results indicate that the presentation of epitopes to CD8+ T cells follows distinct pathways in DCs when the immune response is induced and in hepatocytes during the effector phase

    Proliferating Cell Nuclear Antigen (PCNA) Regulates Primordial Follicle Assembly by Promoting Apoptosis of Oocytes in Fetal and Neonatal Mouse Ovaries

    Get PDF
    Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries
    corecore