13 research outputs found

    Unveiling the seismic sensitivity of the Himalayan tunnels: a comprehensive assessment through analytical and numerical exploration of P-wave dynamics

    Get PDF
    This study investigated the seismic sensitivity of tunnels in the Jammu Region (JR) of the northwestern Himalayas, a region characterized by significant seismic activity and complex geological conditions. The research combined both analytical and numerical approaches to assess the influence of site conditions, tunnel lining, and reinforcement properties on tunnel resilience. A key objective is to develop a more reliable seismic assessment method by adopting a P-wave-based approach, which is particularly suitable for mountainous tunnels prone to landslides. The study identified three seismic hazard zones, with peak ground accelerations (PGA) ranging from less than 0.3 g to greater than 0.5 g, providing vulnerability aspects. The major outcomes of this study include guidelines for the design and retrofitting of sustainable and resilient underground structures in the Himalayas, with broader implications for global projects in seismically active and geologically complex regions. The methodologies and insights can be applied to infrastructure projects worldwide, enhancing the safety of communities living in vulnerable areas. This work aligns with the United Nations Sustainable Development Goals (SDGs), particularly in promoting resilient infrastructure and sustainable development, contributing to both structural resilience and the geological safety of the Himalayan region

    Performance measurement in railway remote driving implementations

    Get PDF
    Remote driving, a well-matured technology in various industries, is relatively new to the railway sector but appears to be a promising solution for achieving advanced automation, especially for conventional trains. The shift from traditional in-cab driving to automated train operation, especially remote operations is a complex and ongoing process, with laboratory and field tests being conducted to examine its viability. This transition presents numerous areas that require further investigation and development. This study delves into these unexplored areas, examining various metrics that could be pivotal during the introduction of railway remote driving. The research adopts a mixed-method approach, employing a triangulation technique in data collection to address the research question on performance indicators for railway remote driving. Through an extensive literature review, benchmarking, and expert surveys, the study pinpoints several performance indicators crucial for assessing the operational effectiveness of remote railway operations. The developed indicators were validated using the two-round Delphi method, with 9 out of 13 being deemed essential by the panel of experts. The list of these indicators is the key finding in the study. They are: latency, data transfer rate, cybersecurity measures, video quality and camera stability, perception, system integration, permanent connection check, driver vitality check, and organizational aspects. The study contributes to filling the existing research gap and serve as a cockpit or instrumental panel in the implementation of remote operations, thus facilitating the transition towards more automated and remotely operated systems.publishedVersio

    A comparative study of geosynthetically reinforced earth foundations in multi-utility transportation infrastructure for high-speed railways

    Get PDF
    A high-quality railway track resting on an excellent foundation is required to support high-speed railway transportation. The foundations of high-speed railway tracks are generally constructed on the lifted embankment with the improved ground using different reinforcement agents like geosynthetics and rigid lateral support. The present study performed dynamic finite element simulations on a ballasted rail track laid over a geosynthetically reinforced embankment with and without facing wall support. Three foundation geometries were analyzed to examine the effect of facing wall support and geosynthetics on the lateral resistance of the foundation. An area loaded with a constant pressure was moved at a constant speed, causing the load motion at different speeds in the 90–360 km/h range. Different parameters were calculated at node paths to help understand the lateral effect of moving load. The results showed that the lateral resistance based on nodal acceleration and velocity increased with facing wall support in the range of 40%–57%. Any increment over the minimum facing wall thickness of 300 mm does not significantly increase lateral resistance. Geosynthetics provided a vital function in the foundations with a less bulk volume of soil and increased the lateral resistance by 10%

    Numerical Study of Dynamic Loading on Ballastless Railway Tracks

    No full text

    Slope Stability Analysis for an Airport Runway in North-East India

    No full text
    corecore