436 research outputs found

    Experimental Validation of the Predicted Binding Site of Escherichia coli K1 Outer Membrane Protein A to Human Brain Microvascular Endothelial Cells: Identification of Critical Mutations That Prevent E. coli Meningitis

    Get PDF
    Escherichia coli K1, the most common cause of meningitis in neonates, has been shown to interact with GlcNAc1–4GlcNAc epitopes of Ecgp96 on human brain microvascular endothelial cells (HBMECs) via OmpA (outer membrane protein A). However, the precise domains of extracellular loops of OmpA interacting with the chitobiose epitopes have not been elucidated. We report the loop-barrel model of these OmpA interactions with the carbohydrate moieties of Ecgp96 predicted from molecular modeling. To test this model experimentally, we generated E. coli K1 strains expressing OmpA with mutations of residues predicted to be critical for interaction with the HBMEC and tested E. coli invasion efficiency. For these same mutations, we predicted the interaction free energies (including explicit calculation of the entropy) from molecular dynamics (MD), finding excellent correlation (R^2 = 90%) with experimental invasion efficiency. Particularly important is that mutating specific residues in loops 1, 2, and 4 to alanines resulted in significant inhibition of E. coli K1 invasion in HBMECs, which is consistent with the complete lack of binding found in the MD simulations for these two cases. These studies suggest that inhibition of the interactions of these residues of Loop 1, 2, and 4 with Ecgp96 could provide a therapeutic strategy to prevent neonatal meningitis due to E. coli K1

    Escherichia coli K1 Modulates Peroxisome Proliferator–Activated Receptor γ and Glucose Transporter 1 at the Blood-Brain Barrier in Neonatal Meningitis

    Get PDF
    Escherichia coli K1 meningitis continues to be a major threat to neonatal health. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with endothelial cell glycoprotein 96 (Ecgp96) in the blood-brain barrier to enter the central nervous system. Here we show that the interaction between OmpA and Ecgp96 downregulates peroxisome proliferator–activated receptor γ (PPAR-γ) and glucose transporter 1 (GLUT-1) levels in human brain microvascular endothelial cells, causing disruption of barrier integrity and inhibition of glucose uptake. The suppression of PPAR-γ and GLUT-1 by the bacteria in the brain microvessels of newborn mice causes extensive pathophysiology owing to interleukin 6 production. Pretreatment with partial or selective PPAR-γ agonists ameliorate the pathological outcomes of infection by suppressing interleukin 6 production in the brain. Thus, inhibition of PPAR-γ and GLUT-1 by E. coli K1 is a novel pathogenic mechanism in meningitis, and pharmacological upregulation of PPAR-γ and GLUT-1 levels may provide novel therapeutic avenues

    The Borrelia afzelii outer membrane protein BAPKO_0422 binds human Factor-H and is predicted to form a membrane-spanning beta-barrel

    Get PDF
    The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a Spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The OmpA domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans rash in Europe. Structural characterisation of one these proteins (BAPKO_0422) by small angle X-ray scattering (SAXS) and circular dichroism indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25 x 45 Å. Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal Phe residue commonly found in Proteobacterial OM proteins is replaced by Ile/Leu or Asn. BAPKO_0422 is demonstrated to bind human factor-H and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value

    Grid Interconnection of PV System Using Symmetric and Asymmetric MLI Topology

    Get PDF
    Generally, PV cell converts sunlight into electricity in the form of dc. Integration of PV system with the existing grid requires dc-ac conversion. This conversion is possible with the help of a dc-ac converter known as an inverter. Among all types of the inverter, multilevel inverters (MLIs) are playing a major role with all their major privileges like High power quality, low distortion, less blocking voltages for switching devices. Conventional multilevel inverter topologies such as diode clamped, flying capacitor and cascaded MLIs are having so many disadvantages. One of the common disadvantage among all the conventional MLIs is the requirement of more number of power electronic components as the level of the output voltage increase. To reduce the power electronic components this paper proposes a multilevel inverter topology in symmetrical and asymmetrical configuration. The proposed MLI uses 12 switches and 19 diodes which are very less compared to conventional MLI topologies for generates nine and thirteen level output voltages. Comparison between presented MLI topology and conventional MLI topologies is presented in this paper. Finally, the proposed MLI whose input is fed from the PV system is integrated into the grid. The proposed concept is validated by using the MATLAB/SIMULINK software and the appropriate results are presented in this paper

    Role of OmpA2 surface regions of Porphyromonas gingivalis in host-pathogen interactions with oral epithelial cells

    Get PDF
    Outer membrane protein A (OmpA) is a key outer membrane protein found in Gram-negative bacteria that contributes to several crucial processes in bacterial virulence. In Porphyromonas gingivalis, OmpA is predicted as a heterotrimer of OmpA1 and OmpA2 subunits encoded by adjacent genes. Here we describe the role of OmpA and its individual subunits in the interaction of P. gingivalis with oral cells. Using knockout mutagenesis, we show that OmpA2 plays a significant role in biofilm formation and interaction with human epithelial cells. We used protein structure prediction software to identify extracellular loops of OmpA2, and determined these are involved in interactions with epithelial cells as evidenced by inhibition of adherence and invasion of P. gingivalis by synthetic extracellular loop peptides and the ability of the peptides to mediate interaction of latex beads with human cells. In particular, we observe that OmpA2-loop 4 plays an important role in the interaction with host cells. These data demonstrate for the first time the important role of P. gingivalis OmpA2 extracellular loops in interaction with epithelial cells, which may help design novel peptide-based antimicrobial therapies for periodontal disease

    Twitter Malicious Account and Content Detection using Machine Learning

    Get PDF
    The capacity to link individuals all over the globe to share media and ideas has contributed to the meteoric rise in popularity of social networks. Making false accounts is a big problem on these networks, and one that consumers are really worried about. As an example, Twitter permits an excessive quantity of spam because it has grown into one of the most widely utilized platforms ever. False accounts promote unwanted services or websites through tweets, which impacts legitimate users and disrupts resource utilization. A popular field of research in current online social networks is the detection of spammers and the identification of fraudulent users on Twitter. Recent polls conducted by research delegates included a taxonomy that classifies Twitter spammers into two broad categories. The first group deals with the topic of detecting fake content, which is often accomplished through the use of a regression prediction model, or lfun scheme. Fake User Identification is another subcategory that focuses on identifying fraudulent Twitter users using a combination of user- and content-based criteria

    CTX-M β-Lactamase Production and Virulence of Escherichia coli K1

    Get PDF
    We report a patient with neonatal meningitis caused by a CTX-M-1–producing Escherichia coli K1 strain. The influence of CTX-M production on virulence was investigated in cell culture and a newborn mouse model of meningitis. CTX-M production had no influence on virulence but was a major factor in clinical outcome

    Mechanisms of Candida albicans Trafficking to the Brain

    Get PDF
    During hematogenously disseminated disease, Candida albicans infects most organs, including the brain. We discovered that a C. albicans vps51Δ/Δ mutant had significantly increased tropism for the brain in the mouse model of disseminated disease. To investigate the mechanisms of this enhanced trafficking to the brain, we studied the interactions of wild-type C. albicans and the vps51Δ/Δ mutant with brain microvascular endothelial cells in vitro. These studies revealed that C. albicans invasion of brain endothelial cells is mediated by the fungal invasins, Als3 and Ssa1. Als3 binds to the gp96 heat shock protein, which is expressed on the surface of brain endothelial cells, but not human umbilical vein endothelial cells, whereas Ssa1 binds to a brain endothelial cell receptor other than gp96. The vps51Δ/Δ mutant has increased surface expression of Als3, which is a major cause of the increased capacity of this mutant to both invade brain endothelial cells in vitro and traffic to the brain in mice. Therefore, during disseminated disease, C. albicans traffics to and infects the brain by binding to gp96, a unique receptor that is expressed specifically on the surface of brain endothelial cells

    Power Quality Enhancement in Grid Connected PV Systems using High Step Up DC-DC Converter

    Get PDF
    Renewable energy sources (RES) are gaining more importance in the present scenario due to the depletion of fossil fuels and increasing power demand. Solar energy is the one of the most promising as it is clean and easily available source. The voltage obtained from the PV system is low. This voltage is increased by high step up dc-dc converter which uses only one switch leads to low switching losses and hence the efficiency of this converter is high. To get the good response this converter is operated in closed loop manner. Integration of PV system with existing grid has so many issues like distorted voltage, current and reactive power control etc. This paper presents a four leg inverter which works on hysteresis current control technique to address the power quality issues like reactive power compensation, balanced load currents and compensation of neutral current. The switching to the inverter is designed in such a way that it supplies the extra current to stabilise the current of the grid that is being supplied to the loads. Finally, the proposed technique is validated by using mat lab/Simulink software and corresponding results are presented in this paper
    corecore