291 research outputs found

    The Mst1 and Mst2 kinases control activation of rho family GTPases and thymic egress of mature thymocytes

    Get PDF
    The Mst1 kinase is an important regulator of murine T cell adhesion, migration, proliferation, and apoptosis. In this study, we analyze mice lacking both Mst1 and Mst2 in hematopoietic cells. Compared with wild-type mice, these double knockout (DKO) mice exhibit a severe reduction in the number of mature T cells in the circulation and in secondary lymphoid organs (SLOs). CD4+CD8− and CD4−CD8+ single-positive (SP) thymocytes in DKO mice resemble mature T cells of wild-type mice but undergo excessive apoptosis, and their egress from the thymus is reduced by >90%. Even when placed directly in the circulation, DKO SP thymocytes failed to enter SLOs. In SP thymocytes, deficiency of Mst1 and Mst2 abolished sphingosine-1 phosphate– and CCL21-induced Mob1 phosphorylation, Rac1 and RhoA GTP charging, and subsequent cell migration. When phosphorylated by Mst1 or Mst2, Mob1 binds and activates the Rac1 guanyl nucleotide exchanger Dock8, which is abundant in the thymus. Thus, the Mst1 and Mst2 kinases control Rho GTPase activation and the migratory responses of SP thymocytes

    Comparative assessment of the sensitivity of fish early-life stage, daphnia and algae to the chronic ecotoxicity of xenobiotics - perspectives for alternatives to animal testing

    Get PDF
    No-observed-effect concentrations (NOECs) are used in environmental hazard classification and labeling of chemicals and their environmental risk assessment. They are typically obtained using standard tests such as the fish early-life stage (FELS) toxicity test, the chronic Daphnia reproduction test, and the algae growth inhibition test. Given the demand to replace and reduce animal tests, we explored the impact of the FELS toxicity test on the determination of effect concentrations by comparing the FELS toxicity test and the Daphnia and algae acute or chronic toxicity tests. Lowest-observed-effect concentrations (LOECs) were used instead of NOECs for better comparison with median lethal or effect concentration data. A database of FELS toxicity data for 223 compounds was established. Corresponding Daphnia and algae toxicity tests were identified using established databases (US Environmental Protection Agency ECOTOX, Organisation for Economic Co-operation and Development QSAR Toolbox, eChemPortal, EnviroTox, and OpenFoodTox). Approximately 9.5% of the investigated compounds showed a 10-fold higher sensitivity with the FELS toxicity test in comparison with the lowest effect concentrations obtained with any of the other tests. Some of these compounds have been known or considered as endocrine disrupting, or are other non-narcotic chemicals, indicating that the higher sensitivity in the FELS toxicity test is related to a specific mechanism of action. Targeting these mechanisms by alternative test systems or endpoints, using fish embryos for instance, may allow reduction or replacement of the FELS toxicity test or may allow us to prioritize compounds for conduction of the FELS toxicity test

    Конституционный статус федеральных территорий в России: теоретические основы законодательного регулирования

    Get PDF
    The subject of the study is the constitutional concept of federal territories in Russia. The purpose of the article is to confirm or disprove hypothesis that constitutional status of federal territories in Russia consists of system of elements and identify such elements. The authors use the method of formal legal interpretation of Russian Constitution, the methods of comparative constitutional law, complex analysis, systemic interpretation of Russian laws and drafts of laws. The main results of research, scope of application. When making an amendment to part 1 of Article 67 of the Constitution of the Russian Federation, the content of this innovation was not disclosed. Therefore the federal law on federal territories will be of decisive importance. The authors define the constitutional characteristics of the federal territories based on the literal content of the constitutional norm and the conclusion of the Constitutional Court of the Russian Federation. The federal territory is an element of the state territory that is not a subject of the federal structure and has a status different from the status of the constituent entities of the Russian Federation. There are specific features of the organization of public power in federal territory. The authors’ vision of the content of each of the elements of the federal territories is presented. It is noted that the defining element of the status of federal territories will be the purpose of their creation. The authors propose a conceptual division of federal territories in Russia into two types: inhabited and uninhabited. It is stated that at the moment, the status elements can be clearly defined only in relation to uninhabited federal territories. The formation of the concept of inhabited federal territories will depend on definition of the purpose of their creation. Conclusions. It is proposed to consider the elements of the status of federal territories in Russia, based on the elements of the status of the subject of the Russian Federation, and in comparison with them. Such elements are: territory, population, subjects of jurisdiction, responsibilities, state power organization, property and budget, system of taxes and fees, names and symbols, population’s role in the state affairs management.Исходя из буквального содержания конституционной нормы и заключения Конституционного Суда РФ, определяются конституционные характеристики федеральных территорий. Предлагается рассматривать статус федеральных территорий исходя из элементов статуса субъекта Российской Федерации: территории, населения, предметов ведения, организации государственной власти, имущества и бюджета, системы налогов и сборов, наименования и символов, участия населения в управлении делами государства. Предлагается их деление на два вида: населенные и ненаселенные. Отмечается, что новая редакция ч. 1 ст. 67 Конституции РФ не раскрывает содержание федеральных территорий, в связи с чем определяющее значение для определения их правового статуса будут иметь цели создания федеральных территорий и положения соответствующего федерального закона

    Autocrine Extracellular Signal-regulated Kinase Activation in Normal Human Keratinocytes is not Interrupted by Calcium Triggering and is Involved in the Control of Cell Cycle at the Early Stage of Calcium-induced Differentiation

    Get PDF
    Normal human epidermal keratinocytes (NHEK) respond to the autocrine activated extracellular signal-regulated kinase (ERK) signaling pathway, which contributes to the survival of keratinocytes. However, during the condition of calcium-induced differentiation, how the autocrine ERK signaling is regulated and affected is poorly understood. The purpose of this study was to understand and to obtain clues to the possible function of the autocrine ERK activation during the calcium-induced differentiation of NHEK. We demonstrated that the autocrine activated ERK was not interrupted by calcium triggering and that it was sustained for at least one day after changing the medium. We also found that the autocrine ERK activation was associated with the expression of cyclin D1 and the cell cycle regulation at the early stage of calcium triggering by treating the cells with the mitogen-activated protein kinase inhibitor PD98059. However, the PD98059 treatment did not have a significant influence on the expression of involucrin and loricrin. In addition, we demonstrated that autocrine ERK activation was associated with protein kinase C and p38MAPK signaling. We suggest that the activation of autocrine ERK is not interrupted by calcium triggering and it might participate in cell growth during the early stage of calcium-induced differentiation in NHEK

    Human Mob1 proteins are required for cytokinesis by controlling microtubule stability

    Get PDF
    The completion of cytokinesis requires abscission of the midbody, a microtubule-rich cytoplasmic bridge that connects the daughter cells before their final separation. Although it has been established that both the midbody structure and membrane fusion are essential for abscission, the biochemical machinery and the cellular processes of abscission remain ill-defined. Here we report that human Mob1A and Mob1B proteins are involved in the regulation of abscission of the intercellular bridge. The Mob family is a group of highly conserved proteins in eukaryotes, described as binding partners as well as co-activators of protein kinases of the Ndr family, and as members of the Hippo pathway. We show that depletion of Mob1A and Mob1B by RNAi causes abscission failure as a consequence of hyper-stabilization of microtubules in the midbody region. Interestingly, depleting Mob1 also increases cell motility after cytokinesis, and induces prolonged centriole separation in G1 phase. In contrast, centrosomes fail to split when either Mob1A or Mob1B is overexpressed. Our findings indicate that human Mob1 proteins are involved in the regulation of microtubule stability at the midbody. We conclude that Mob1A and Mob1B are needed for cell abscission and centriole re-joining after telophase and cytokinesis.FCT [PRAXIS XXI/DB/19823/99, SFRH/BPD/20698/2004, POCTI/BCI/34405/99, POCTI/CBO/39099/2001, POCTI/BIA/PRO/60337/2004, PTDC/SAU-OBD/105234-2008, PEst-OE/EQB/LA0023/2011]; Contract ARC [5479]; Medical Research Council [G1000818]info:eu-repo/semantics/publishedVersio

    Mst1/2 signalling to Yap: gatekeeper for liver size and tumour development

    Get PDF
    The mechanisms controlling mammalian organ size have long been a source of fascination for biologists. These controls are needed to both ensure the integrity of the body plan and to restrict inappropriate proliferation that could lead to cancer. Regulation of liver size is of particular interest inasmuch as this organ maintains the capacity for regeneration throughout life, and is able to regain precisely its original mass after partial surgical resection. Recent studies using genetically engineered mouse strains have shed new light on this problem; the Hippo signalling pathway, first elucidated as a regulator of organ size in Drosophila, has been identified as dominant determinant of liver growth. Defects in this pathway in mouse liver lead to sustained liver overgrowth and the eventual development of both major types of liver cancer, hepatocellular carcinoma and cholangiocarcinoma. In this review, we discuss the role of Hippo signalling in liver biology and the contribution of this pathway to liver cancer in humans

    Naproxen affects multiple organs in fish but is still an environmentally better alternative to diclofenac

    Get PDF
    The presence of diclofenac in the aquatic environment and the risks for aquatic wildlife, especially fish, have been raised in several studies. One way to manage risks without enforcing improved wastewater treatment would be to substitute diclofenac (when suitable from a clinical perspective) with another non-steroidal anti-inflammatory drug (NSAID) associated with less environmental risk. While there are many ecotoxicity-studies of different NSAIDs, they vary extensively in set-up, species studied, endpoints and reporting format, making direct comparisons difficult. We previously published a comprehensive study on the effects of diclofenac in the three-spined stickleback (Gasterosteus aculeatus). Our present aim was to generate relevant effect data for another NSAID (naproxen) using a very similar setup, which also allowed direct comparisons with diclofenac regarding hazards and risks. Sticklebacks were therefore exposed to naproxen in flow-through systems for 27 days. Triplicate aquaria with 20 fish per aquarium were used for each concentration (0, 18, 70, 299 or 1232 mu g/L). We investigated bioconcentration, hepatic gene expression, jaw lesions, kidney and liver histology. On day 21, mortalities in the highest exposure concentration group unexpectedly reached >= 25 % in all three replicate aquaria, leading us to terminate and sample that group the same day. On the last day (day 27), the mortality was also significantly increased in the second highest exposure concentration group. Increased renal hematopoietic hyperplasia was observed in fish exposed to 299 and 1232 mu g/L. This represents considerably higher concentrations than those expected in surface waters as a result of naproxen use. Such effects were observed already at 4.6 mu g/L in the experiment with diclofenac (lowest tested concentration). Similar to the responses to diclofenac, a concentration-dependent increase in both relative hepatic gene expression of c7 (complement component 7) and jaw lesions were observed, again at concentrations considerably higher than expected in surface waters. Naproxen bioconcentrated less than diclofenac, in line with the observed effect data. An analysis of recent sales data and reported concentrations in treated sewage effluent in Sweden suggest that despite higher dosages used for naproxen, a complete substitution would only be expected to double naproxen emissions. In summary, naproxen and diclofenac produce highly similar effects in fish but the environmental hazards and risks are clearly lower for naproxen. Hence, if there are concerns for environmental risks to fish with diclofenac, a substitution would be advisable when naproxen presents an adequate alternative from a clinical point-of-view

    Down-Regulation of Yes Associated Protein 1 Expression Reduces Cell Proliferation and Clonogenicity of Pancreatic Cancer Cells

    Get PDF
    BACKGROUND: The Hippo pathway regulates organ size by inhibiting cell proliferation and promoting cell apoptosis upon its activation. The Yes Associated Protein 1 (YAP1) is a nuclear effector of the Hippo pathway that promotes cell growth as a transcription co-activator. In human cancer, the YAP1 gene was reported as amplified and over-expressed in several tumor types. METHODS: Immunohistochemical staining of YAP1 protein was used to assess the expression of YAP1 in pancreatic tumor tissues. siRNA oligonucleotides were used to knockdown the expression of YAP1 and their effects on pancreatic cancer cells were investigated using cell proliferation, apoptosis, and anchorage-independent growth assays. The Wilcoxon signed-rank, Pearson correlation coefficient, Kendall's Tau, Spearman's Rho, and an independent two-sample t (two-tailed) test were used to determine the statistical significance of the data. RESULTS: Immunohistochemistry studies in pancreatic tumor tissues revealed YAP1 staining intensities were moderate to strong in the nucleus and cytoplasm of the tumor cells, whereas the adjacent normal epithelial showed negative to weak staining. In cultured cells, YAP1 expression and localization was modulated by cell density. YAP1 total protein expression increased in the nuclear fractions in BxPC-3 and PANC-1, while it declined in HPDE6 as cell density increased. Additionally, treatment of pancreatic cancer cell lines, BxPC-3 and PANC-1, with YAP1-targeting siRNA oligonucleotides significantly reduced their proliferation in vitro. Furthermore, treatment with YAP1 siRNA oligonucleotides diminished the anchorage-independent growth on soft agar of pancreatic cancer cells, suggesting a role of YAP1 in pancreatic cancer tumorigenesis. CONCLUSIONS: YAP1 is overexpressed in pancreatic cancer tissues and potentially plays an important role in the clonogenicity and growth of pancreatic cancer cells

    The inhibition of the expression of the small Rho GTPase Rac1 induces differentiation with no effect on cell proliferation in growing human adult keratinocytes.

    Full text link
    Rac1 is a Rho subfamily small GTPase which is highly expressed in epidermal keratinocytes. In mice the significance of Rac1 for the maintenance of the epidermis has been controversial. In keratinocytes from human origin, the role of Rac1 in the control of growth/differentiation is still obscure. In this study we used RNA interference to induce specific inhibition of Rac1 expression in cultured human keratinocytes and analyzed the consequences on proliferation and differentiation. We found that the autocrine proliferation of keratinocytes is unaltered by Rac1 silencing. However, the suppression of Rac1 induced premature differentiation as revealed by the expression of markers (keratin 10, involucrin), but the involved mechanism is independent of the activity of p38 mitogen-activated protein kinase. Rather, we found that the effects of Rac1 silencing on keratinocytes differentiation are concomitant with negative regulation of the Ser62/Thr58 phosphorylation on the transcription factor c-myc, a mechanism known to control post-translational stability of the c-myc protein. Thus, in growing human keratinocytes, Rac1 could impede the expression of premature differentiation markers, probably by exerting positive control on c-myc activity and its binding to specific promoters
    corecore