489 research outputs found

    Quantum phenomenology of conjunction fallacy

    Full text link
    A quantum-like description of human decision process is developed, and a heuristic argument supporting the theory as sound phenomenology is given. It is shown to be capable of quantitatively explaining the conjunction fallacy in the same footing as the violation of sure-thing principle.Comment: LaTeX 8 pages, 2 figure

    Incentive-Compatible Surveys via Posterior Probabilities

    Get PDF
    We consider the problem of eliciting truthful responses to a survey question when the respondents share a common prior that the survey planner is agnostic about. The planner would therefore like to have a "universal” mechanism, which would induce honest answers for all possible priors. If the planner also requires a locality condition that ensures that the mechanism payoffs are determined by the respondents' posterior probabilities of the true state of nature, we prove that, under additional smoothness and sensitivity conditions, the payoff in the truth-telling equilibrium must be a logarithmic function of those posterior probabilities. Moreover, the respondents are necessarily ranked according to those probabilities. Finally, we discuss implementation issues

    Prospect theory and tax evasion: a reconsideration of the Yitzhaki puzzle

    Get PDF
    The standard expected utility (EUT) model of tax evasion predicts that evasion is decreasing in the marginal tax rate (the Yitzhaki puzzle). Recent literature shows cases in which incorporating prospect theory (PT) does and does not overturn the Puzzle. In a general environment that nests both PT and EUT preferences, we provide a detailed study of how the elements of PT affect the Puzzle. PT does not always reverse the Puzzle, hence we give and interpret conditions for when it does and does not. When allowing for stigma and/or variable audit probability, PT reverses the Puzzle in the same way and with the same limitations as does EUT, if equally augmented

    Collisional kinetics of non-uniform electric field, low-pressure, direct-current discharges in H2_{2}

    Full text link
    A model of the collisional kinetics of energetic hydrogen atoms, molecules, and ions in pure H2_2 discharges is used to predict Hα_\alpha emission profiles and spatial distributions of emission from the cathode regions of low-pressure, weakly-ionized discharges for comparison with a wide variety of experiments. Positive and negative ion energy distributions are also predicted. The model developed for spatially uniform electric fields and current densities less than 10310^{-3} A/m2^2 is extended to non-uniform electric fields, current densities of 10310^{3} A/m2^2, and electric field to gas density ratios E/N=1.3E/N = 1.3 MTd at 0.002 to 5 Torr pressure. (1 Td = 102110^{-21} V m2^2 and 1 Torr = 133 Pa) The observed far-wing Doppler broadening and spatial distribution of the Hα_\alpha emission is consistent with reactions among H+^+, H2+_2^+, H3+_3^+, and HH^-H ions, fast H atoms, and fast H2_2 molecules, and with reflection, excitation, and attachment to fast H atoms at surfaces. The Hα_\alpha excitation and H^- formation occur principally by collisions of fast H, fast H2_2, and H+^+ with H2_2. Simplifications include using a one-dimensional geometry, a multi-beam transport model, and the average cathode-fall electric field. The Hα_\alpha emission is linear with current density over eight orders of magnitude. The calculated ion energy distributions agree satisfactorily with experiment for H2+_2^+ and H3+_3^+, but are only in qualitative agreement for H+^+ and H^-. The experiments successfully modeled range from short-gap, parallel-plane glow discharges to beam-like, electrostatic-confinement discharges.Comment: Submitted to Plasmas Sources Science and Technology 8/18/201

    Risk-taking in disorders of natural and drug rewards: neural correlates and effects of probability, valence, and magnitude.

    Get PDF
    Pathological behaviors toward drugs and food rewards have underlying commonalities. Risk-taking has a fourfold pattern varying as a function of probability and valence leading to the nonlinearity of probability weighting with overweighting of small probabilities and underweighting of large probabilities. Here we assess these influences on risk-taking in patients with pathological behaviors toward drug and food rewards and examine structural neural correlates of nonlinearity of probability weighting in healthy volunteers. In the anticipation of rewards, subjects with binge eating disorder show greater risk-taking, similar to substance-use disorders. Methamphetamine-dependent subjects had greater nonlinearity of probability weighting along with impaired subjective discrimination of probability and reward magnitude. Ex-smokers also had lower risk-taking to rewards compared with non-smokers. In the anticipation of losses, obesity without binge eating had a similar pattern to other substance-use disorders. Obese subjects with binge eating also have impaired discrimination of subjective value similar to that of the methamphetamine-dependent subjects. Nonlinearity of probability weighting was associated with lower gray matter volume in dorsolateral and ventromedial prefrontal cortex and orbitofrontal cortex in healthy volunteers. Our findings support a distinct subtype of binge eating disorder in obesity with similarities in risk-taking in the reward domain to substance use disorders. The results dovetail with the current approach of defining mechanistically based dimensional approaches rather than categorical approaches to psychiatric disorders. The relationship to risk probability and valence may underlie the propensity toward pathological behaviors toward different types of rewards.This is the final version. It was first published by NPG at http://www.nature.com/npp/journal/v40/n4/full/npp2014242a.htm

    Are People Really Risk Seeking for Losses?

    Full text link

    A Note on the Shape of the Probability Weighting Function

    Get PDF
    The focus of this contribution is on the transformation of objective probability, which in Prospect Theory is commonly referred as probability weighting. Empirical evidence suggests a typical inverse-S shaped function: decision makers tend to overweight small probabilities, and underweight medium and high probabilities; moreover, the probability weighting function is initially concave and then convex. We apply different parametric weighting functions proposed in the literature to the evaluation of derivative contracts and to insurance premium principles
    corecore