77,577 research outputs found
Doubly Spinning Black Rings
We study a method to solve stationary axisymmetric vacuum Einstein equations
numerically. As an illustration, the five-dimensional doubly spinning black
rings that have two independent angular momenta are formulated in a way
suitable for fully nonlinear numerical method. Expanding for small second
angular velocity, the formulation is solved perturbatively upto second order
involving the backreaction from the second spin. The obtained solutions are
regular without conical singularity, and the physical properties are discussed
with the phase diagram of the reduced entropy vs the reduced angular momenta.
Possible extensions of the present approach to constructing the higher
dimensional version of black ring and the ring with the cosmological constant
are also discussed.Comment: 20 pages, 6 figure
Geographical distribution and aspects of the ecology of the hemiparasitic angiosperm Striga asiatica (L) Kuntze: A herbarium study
Striga asiatica (Scrophulariaceae) is an obligate root hemiparasite of mainly C-4 grasses (including cereals). It is the most widespread of the 42 Striga species occurring in many semi-tropical, semi-arid regions of mainly the Old World. Examination of herbaria specimens revealed that S. asiatica has a wider geographical distribution, is present at higher altitudes and occurs in a more diverse range of habitats than previously reported. The host range is also larger than previously reported and is likely to include a large number of C-3 plants. Morphology of examined specimens revealed variation in size and corolla colour suggesting the existence of ecotypes. Climate may exert a significant influence on the distribution of S. asiatica given the diversity of potential host plants and their distribution beyond the current recorded range of S. asiatica
How groups can foster consensus: The case of local cultures
A local culture denotes a commonly shared behaviour within a cluster of
firms. Similar to social norms or conventions, it is an emergent feature
resulting from the firms' interaction in an economic network. To model these
dynamics, we consider a distributed agent population, representing e.g. firms
or individuals. Further, we build on a continuous opinion dynamics model with
bounded confidence (), which assumes that two agents only interact if
differences in their behaviour are less than . Interaction results in
more similarity of behaviour, i.e. convergence towards a common mean. This
framework is extended by two major concepts: (i) The agent's in-group
consisting of acquainted interaction partners is explicitly taken into account.
This leads to an effective agent behaviour reflecting that agents try to
continue to interact with past partners and thus to keep sufficiently close to
them. (ii) The in-group network structure changes over time, as agents can form
new links to other agents with sufficiently close effective behaviour or delete
links to agents no longer close in behaviour. Thus, our model provides a
feedback mechanism between the agents' behaviour and their in-group structure.
Studying its consequences by means of agent-based computer simulations, we find
that for narrow-minded agents (low ) the additional feedback helps to
find consensus more often, whereas for open-minded agents (high )
this does not hold. This counterintuitive result is explained by simulations of
the network evolution
Fermion Masses from SO(10) Hermitian Matrices
Masses of fermions in the SO(10) 16-plet are constructed using only the 10,
120 and 126 scalar multiplets. The mass matrices are restricted to be hermitian
and the theory is constructed to have certain assumed quark masses, charged
lepton masses and CKM matrix in accord with data. The remaining free parameters
are found by fitting to light neutrino masses and MSN matrices result as
predictions.Comment: 23 pages. Small textual additions for clarification; formalism and
results unchanged. Version to appear in Phys. Rev.
Computing the lowest eigenvalues of the Fermion matrix by subspace iterations
Subspace iterations are used to minimise a generalised Ritz functional of a
large, sparse Hermitean matrix. In this way, the lowest eigenvalues are
determined. Tests with demonstrate that the computational
cost (no. of matrix multiplies) does not increase substantially with . This
implies that, as compared to the case of a , the additional eigenvalues
are obtained for free.Comment: Talk presented at LATTICE96(algorithms), 3 pages, 2 Postscript
figures, uses epsf.sty, espcrc2.st
The Height of a Giraffe
A minor modification of the arguments of Press and Lightman leads to an
estimate of the height of the tallest running, breathing organism on a
habitable planet as the Bohr radius multiplied by the three-tenths power of the
ratio of the electrical to gravitational forces between two protons (rather
than the one-quarter power that Press got for the largest animal that would not
break in falling over, after making an assumption of unreasonable brittleness).
My new estimate gives a height of about 3.6 meters rather than Press's original
estimate of about 2.6 cm. It also implies that the number of atoms in the
tallest runner is very roughly of the order of the nine-tenths power of the
ratio of the electrical to gravitational forces between two protons, which is
about 3 x 10^32.Comment: 12 pages, LaTe
Regularization of fields for self-force problems in curved spacetime: foundations and a time-domain application
We propose an approach for the calculation of self-forces, energy fluxes and
waveforms arising from moving point charges in curved spacetimes. As opposed to
mode-sum schemes that regularize the self-force derived from the singular
retarded field, this approach regularizes the retarded field itself. The
singular part of the retarded field is first analytically identified and
removed, yielding a finite, differentiable remainder from which the self-force
is easily calculated. This regular remainder solves a wave equation which
enjoys the benefit of having a non-singular source. Solving this wave equation
for the remainder completely avoids the calculation of the singular retarded
field along with the attendant difficulties associated with numerically
modeling a delta function source. From this differentiable remainder one may
compute the self-force, the energy flux, and also a waveform which reflects the
effects of the self-force. As a test of principle, we implement this method
using a 4th-order (1+1) code, and calculate the self-force for the simple case
of a scalar charge moving in a circular orbit around a Schwarzschild black
hole. We achieve agreement with frequency-domain results to ~ 0.1% or better.Comment: 15 pages, 12 figures, 1 table. More figures, extended summar
Electronic Structure of Hyperkagome Na4Ir3O8
We investigate the electronic structure of the frustrated magnet Na4Ir3O8
using density functional theory. Due to strong spin-orbit coupling, the
hyperkagome lattice is characterized by a half-filled complex of states, making
it a cubic iridium analogue of the high temperature superconducting cuprates.
The implications of our results for this unique material are discussed.Comment: expanded discussion with extra figures - 6 pages, 10 figure
- …
