1,456 research outputs found
Reducing orbital eccentricity in binary black hole simulations
Binary black hole simulations starting from quasi-circular (i.e., zero radial
velocity) initial data have orbits with small but non-zero orbital
eccentricities. In this paper the quasi-equilibrium initial-data method is
extended to allow non-zero radial velocities to be specified in binary black
hole initial data. New low-eccentricity initial data are obtained by adjusting
the orbital frequency and radial velocities to minimize the orbital
eccentricity, and the resulting ( orbit) evolutions are compared with
those of quasi-circular initial data. Evolutions of the quasi-circular data
clearly show eccentric orbits, with eccentricity that decays over time. The
precise decay rate depends on the definition of eccentricity; if defined in
terms of variations in the orbital frequency, the decay rate agrees well with
the prediction of Peters (1964). The gravitational waveforms, which contain
cycles in the dominant l=m=2 mode, are largely unaffected by the
eccentricity of the quasi-circular initial data. The overlap between the
dominant mode in the quasi-circular evolution and the same mode in the
low-eccentricity evolution is about 0.99.Comment: 27 pages, 9 figures; various minor clarifications; accepted to the
"New Frontiers" special issue of CQ
Black Hole Mergers and Unstable Circular Orbits
We describe recent numerical simulations of the merger of a class of equal
mass, non-spinning, eccentric binary black hole systems in general relativity.
We show that with appropriate fine-tuning of the initial conditions to a region
of parameter space we denote the threshold of immediate merger, the binary
enters a phase of close interaction in a near-circular orbit, stays there for
an amount of time proportional to logarithmic distance from the threshold in
parameter space, then either separates or merges to form a single Kerr black
hole. To gain a better understanding of this phenomena we study an analogous
problem in the evolution of equatorial geodesics about a central Kerr black
hole. A similar threshold of capture exists for appropriate classes of initial
conditions, and tuning to threshold the geodesics approach one of the unstable
circular geodesics of the Kerr spacetime. Remarkably, with a natural mapping of
the parameters of the geodesic to that of the equal mass system, the scaling
exponent describing the whirl phase of each system turns out to be quite
similar. Armed with this lone piece of evidence that an approximate
correspondence might exist between near-threshold evolution of geodesics and
generic binary mergers, we illustrate how this information can be used to
estimate the cross section and energy emitted in the ultra relativistic black
hole scattering problem. This could eventually be of use in providing estimates
for the related problem of parton collisions at the Large Hadron Collider in
extra dimension scenarios where black holes are produced.Comment: 16 pages, 12 figures; updated to coincide with journal versio
Gravitational Collapse of Massless Scalar Field with Negative Cosmological Constant in (2+1) Dimensions
The 2+1-dimensional geodesic circularly symmetric solutions of
Einstein-massless-scalar field equations with negative cosmological constant
are found and their local and global properties are studied. It is found that
one of them represents gravitational collapse where black holes are always
formed.Comment: no figure
Ninja data analysis with a detection pipeline based on the Hilbert-Huang Transform
The Ninja data analysis challenge allowed the study of the sensitivity of
data analysis pipelines to binary black hole numerical relativity waveforms in
simulated Gaussian noise at the design level of the LIGO observatory and the
VIRGO observatory. We analyzed NINJA data with a pipeline based on the Hilbert
Huang Transform, utilizing a detection stage and a characterization stage:
detection is performed by triggering on excess instantaneous power,
characterization is performed by displaying the kernel density enhanced (KD)
time-frequency trace of the signal. Using the simulated data based on the two
LIGO detectors, we were able to detect 77 signals out of 126 above SNR 5 in
coincidence, with 43 missed events characterized by signal to noise ratio SNR
less than 10. Characterization of the detected signals revealed the merger part
of the waveform in high time and frequency resolution, free from time-frequency
uncertainty. We estimated the timelag of the signals between the detectors
based on the optimal overlap of the individual KD time-frequency maps, yielding
estimates accurate within a fraction of a millisecond for half of the events. A
coherent addition of the data sets according to the estimated timelag
eventually was used in a characterization of the event.Comment: Accepted for publication in CQG, special issue NRDA proceedings 200
Radiation from low-momentum zoom-whirl orbits
We study zoom-whirl behaviour of equal mass, non-spinning black hole binaries
in full general relativity. The magnitude of the linear momentum of the initial
data is fixed to that of a quasi-circular orbit, and its direction is varied.
We find a global maximum in radiated energy for a configuration which completes
roughly one orbit. The radiated energy in this case exceeds the value of a
quasi-circular binary with the same momentum by 15%. The direction parameter
only requires minor tuning for the localization of the maximum. There is
non-trivial dependence of the energy radiated on eccentricity (several local
maxima and minima). Correlations with orbital dynamics shortly before merger
are discussed. While being strongly gauge dependent, these findings are
intuitive from a physical point of view and support basic ideas about the
efficiency of gravitational radiation from a binary system.Comment: 9 pages, 6 figures, Amaldi8 conference proceedings as publishe
Simulation of Binary Black Hole Spacetimes with a Harmonic Evolution Scheme
A numerical solution scheme for the Einstein field equations based on
generalized harmonic coordinates is described, focusing on details not provided
before in the literature and that are of particular relevance to the binary
black hole problem. This includes demonstrations of the effectiveness of
constraint damping, and how the time slicing can be controlled through the use
of a source function evolution equation. In addition, some results from an
ongoing study of binary black hole coalescence, where the black holes are
formed via scalar field collapse, are shown. Scalar fields offer a convenient
route to exploring certain aspects of black hole interactions, and one
interesting, though tentative suggestion from this early study is that behavior
reminiscent of "zoom-whirl" orbits in particle trajectories is also present in
the merger of equal mass, non-spinning binaries, with appropriately fine-tuned
initial conditions.Comment: 16 pages, 14 figures; replaced with published versio
An exact solution for 2+1 dimensional critical collapse
We find an exact solution in closed form for the critical collapse of a
scalar field with cosmological constant in 2+1 dimensions. This solution agrees
with the numerical simulation done by Pretorius and Choptuik of this system.Comment: 5 pages, 5 figures, Revtex. New comparison of analytic and numerical
solutions beyond the past light cone of the singularity added. Two new
references added. Error in equation (21) correcte
DEFROST: A New Code for Simulating Preheating after Inflation
At the end of inflation, dynamical instability can rapidly deposit the energy
of homogeneous cold inflaton into excitations of other fields. This process,
known as preheating, is rather violent, inhomogeneous and non-linear, and has
to be studied numerically. This paper presents a new code for simulating scalar
field dynamics in expanding universe written for that purpose. Compared to
available alternatives, it significantly improves both the speed and the
accuracy of calculations, and is fully instrumented for 3D visualization. We
reproduce previously published results on preheating in simple chaotic
inflation models, and further investigate non-linear dynamics of the inflaton
decay. Surprisingly, we find that the fields do not want to thermalize quite
the way one would think. Instead of directly reaching equilibrium, the
evolution appears to be stuck in a rather simple but quite inhomogeneous state.
In particular, one-point distribution function of total energy density appears
to be universal among various two-field preheating models, and is exceedingly
well described by a lognormal distribution. It is tempting to attribute this
state to scalar field turbulence.Comment: RevTeX 4.0; 16 pages, 9 figure
Unequal Mass Binary Black Hole Plunges and Gravitational Recoil
We present results from fully nonlinear simulations of unequal mass binary
black holes plunging from close separations well inside the innermost stable
circular orbit with mass ratios q = M_1/M_2 = {1,0.85,0.78,0.55,0.32}, or
equivalently, with reduced mass parameters . For each case, the initial binary orbital
parameters are chosen from the Cook-Baumgarte equal-mass ISCO configuration. We
show waveforms of the dominant l=2,3 modes and compute estimates of energy and
angular momentum radiated. For the plunges from the close separations
considered, we measure kick velocities from gravitational radiation recoil in
the range 25-82 km/s. Due to the initial close separations our kick velocity
estimates should be understood as a lower bound. The close configurations
considered are also likely to contain significant eccentricities influencing
the recoil velocity.Comment: 12 pages, 5 figures, to appear in "New Frontiers" special issue of
CQ
- …
