3,066 research outputs found

    The BSSN formulation is a partially constrained evolution system

    Full text link
    Relativistic simulations in 3+1 dimensions typically monitor the Hamiltonian and momentum constraints during evolution, with significant violations of these constraints indicating the presence of instabilities. In this paper we rewrite the momentum constraints as first-order evolution equations, and show that the popular BSSN formulation of the Einstein equations explicitly uses the momentum constraints as evolution equations. We conjecture that this feature is a key reason for the relative success of the BSSN formulation in numerical relativity.Comment: 8 pages, minor grammatical correction

    Surprises in the Evaporation of 2-Dimensional Black Holes

    Full text link
    Quantum evaporation of Callan-Giddings-Harvey-Strominger (CGHS) black holes is analyzed in the mean field approximation. This semi-classical theory incorporates back reaction. Detailed analytical and numerical calculations show that, while some of the assumptions underlying the standard evaporation paradigm are borne out, several are not. Furthermore, if the black hole is initially macroscopic, the evaporation process exhibits remarkable universal properties (which are distinct from the features observed in the simplified, exactly soluble models). Although the literature on CGHS black holes is quite rich, these features had escaped previous analyses, in part because of lack of required numerical precision, and in part because certain properties and symmetries of the model were not fully recognized. Finally, our results provide support for the full quantum gravity scenario recently developed by Ashtekar, Taveras and Varadarajan.Comment: 4 pages, 3 figure

    Critical Collapse of the Massless Scalar Field in Axisymmetry

    Get PDF
    We present results from a numerical study of critical gravitational collapse of axisymmetric distributions of massless scalar field energy. We find threshold behavior that can be described by the spherically symmetric critical solution with axisymmetric perturbations. However, we see indications of a growing, non-spherical mode about the spherically symmetric critical solution. The effect of this instability is that the small asymmetry present in what would otherwise be a spherically symmetric self-similar solution grows. This growth continues until a bifurcation occurs and two distinct regions form on the axis, each resembling the spherically symmetric self-similar solution. The existence of a non-spherical unstable mode is in conflict with previous perturbative results, and we therefore discuss whether such a mode exists in the continuum limit, or whether we are instead seeing a marginally stable mode that is rendered unstable by numerical approximation.Comment: 11 pages, 8 figure

    Dissociation mechanism for solid-phase epitaxy of silicon in the Si <100>/Pd2Si/Si (amorphous) system

    Get PDF
    Solid-phase epitaxial growth (SPEG) of silicon was investigated by a tracer technique using radioactive 31Si formed by neutron activation in a nuclear reactor. After depositing Pd and Si onto activated single-crystal silicon substrates, Pd2Si was formed with about equal amounts of radioactive and nonradioactive Si during heating at 400 °C for 5 min. After an 1-sec annealing stage (450-->500 °C in 1 h) this silicide layer, which moves to the top of the sample during SPEG, is etched off with aqua regia. From the absence of radioactive 31Si in the etch, it is concluded that SPEG takes place by a dissociation mechanism rather than by diffusion

    Radioactive silicon as a marker in thin-film silicide formation

    Get PDF
    A new technique using radioactive 31Si (half-life =2.62 h), formed in a nuclear reactor, as a marker for studying silicide formation is described. A few hundred angstroms of radioactive silicon is first deposited onto the silicon substrate, followed immediately by the deposition of a few thousand angstroms of the metal. When the sample is heated, a silicide is first formed with the radioactive silicon. Upon further silicide formation, this band of radioactive silicide can move to the surface of the sample if silicide formation takes place by diffusion of the metal or by silicon substitutional and/or vacancy diffusion. However, if the band of radioactive silicide stays at the silicon substrate interface it can be concluded that silicon diffuses by interstitial and/or grain-boundary diffusion. This technique was tested by studying the formation of Ni2Si on silicon at 330 °C. From a combination of ion-beam sputtering, radioactivity measurement, and Rutherford backscattering it is found that the band of radioactive silicide moves to the surface of the sample during silicide formation. From these results, implanted noble-gas marker studies and the rate dependence of Ni2Si growth on grain size, it is concluded that nickel is the dominant diffusing species during Ni2Si formation, and that it moves by grain-boundary diffusion

    Black Hole Superradiance in Dynamical Spacetime

    Full text link
    We study the superradiant scattering of gravitational waves by a nearly extremal black hole (dimensionless spin a=0.99a=0.99) by numerically solving the full Einstein field equations, thus including backreaction effects. This allows us to study the dynamics of the black hole as it loses energy and angular momentum during the scattering process. To explore the nonlinear phase of the interaction, we consider gravitational wave packets with initial energies up to 1010% of the mass of the black hole. We find that as the incident wave energy increases, the amplification of the scattered waves, as well as the energy extraction efficiency from the black hole, is reduced. During the interaction the apparent horizon geometry undergoes sizable nonaxisymmetric oscillations. The largest amplitude excitations occur when the peak frequency of the incident wave packet is above where superradiance occurs, but close to the dominant quasinormal mode frequency of the black hole.Comment: 5 pages, 4 figures; revised to match PRD versio

    On the use of variability time-scales as an early classifier of radio transients and variables

    Get PDF
    We have shown previously that a broad correlation between the peak radio luminosity and the variability time-scales, approximately L ~ t^5, exists for variable synchrotron emitting sources and that different classes of astrophysical source occupy different regions of luminosity and time-scale space. Based on those results, we investigate whether the most basic information available for a newly discovered radio variable or transient - their rise and/or decline rate - can be used to set initial constraints on the class of events from which they originate. We have analysed a sample of ~ 800 synchrotron flares, selected from light-curves of ~ 90 sources observed at 5-8 GHz, representing a wide range of astrophysical phenomena, from flare stars to supermassive black holes. Selection of outbursts from the noisy radio light-curves has been done automatically in order to ensure reproducibility of results. The distribution of rise/decline rates for the selected flares is modelled as a Gaussian probability distribution for each class of object, and further convolved with estimated areal density of that class in order to correct for the strong bias in our sample. We show in this way that comparing the measured variability time-scale of a radio transient/variable of unknown origin can provide an early, albeit approximate, classification of the object, and could form part of a suite of measurements used to provide early categorisation of such events. Finally, we also discuss the effect scintillating sources will have on our ability to classify events based on their variability time-scales.Comment: Accepted for publication in MNRA

    Two fast X-ray transients in archival Chandra data

    Get PDF
    We present the discovery of two new X-ray transients in archival Chandra data. The first transient, XRT 110103, occurred in January 2011 and shows a sharp rise of at least three orders of magnitude in count rate in less than 10 s, a flat peak for about 20 s and decays by two orders of magnitude in the next 60 s. We find no optical or infrared counterpart to this event in preexisting survey data or in an observation taken by the SIRIUS instrument at the Infrared Survey Facility 2.1 yr after the transient, providing limiting magnitudes of J>18.1, H>17.6 and Ks>16.3. This event shows similarities to the transient previously reported in Jonker et al. which was interpreted as the possible tidal disruption of a white dwarf by an intermediate mass black hole. We discuss the possibility that these transients originate from the same type of event. If we assume these events are related a rough estimate of the rates gives 1.4*10^5 per year over the whole sky with a peak 0.3-7 keV X-ray flux greater than 2*10^-10 erg cm^-2 s^-1 . The second transient, XRT 120830, occurred in August 2012 and shows a rise of at least three orders of magnitude in count rate and a subsequent decay of around one order of magnitude all within 10 s, followed by a slower quasi-exponential decay over the remaining 30 ks of the observation. We detect a likely infrared counterpart with magnitudes J=16.70+/-0.06, H=15.92+/-0.04 and Ks=15.37+/-0.06 which shows an average proper motion of 74+/-19 milliarcsec per year compared to archival 2MASS observations. The JHKs magnitudes, proper motion and X-ray flux of XRT 120830 are consistent with a bright flare from a nearby late M or early L dwarf.Comment: Accepted for publication in MNRAS, 6 pages, 5 figure

    Comparisons of binary black hole merger waveforms

    Get PDF
    This a particularly exciting time for gravitational wave physics. Ground-based gravitational wave detectors are now operating at a sensitivity such that gravitational radiation may soon be directly detected, and recently several groups have independently made significant breakthroughs that have finally enabled numerical relativists to solve the Einstein field equations for coalescing black-hole binaries, a key source of gravitational radiation. The numerical relativity community is now in the position to begin providing simulated merger waveforms for use by the data analysis community, and it is therefore very important that we provide ways to validate the results produced by various numerical approaches. Here, we present a simple comparison of the waveforms produced by two very different, but equally successful approaches--the generalized harmonic gauge and the moving puncture methods. We compare waveforms of equal-mass black hole mergers with minimal or vanishing spins. The results show exceptional agreement for the final burst of radiation, with some differences attributable to small spins on the black holes in one case.Comment: Revtex 4, 5 pages. Published versio
    corecore