4,469 research outputs found

    The Multiple Young Stellar Objects of HBC 515: An X-ray and Millimeter-wave Imaging Study in (Pre-main Sequence) Diversity

    Get PDF
    We present Chandra X-ray Observatory and Submillimeter Array (SMA) imaging of HBC 515, a system consisting of multiple young stellar objects (YSOs). The five members of HBC 515 represent a remarkably diverse array of YSOs, ranging from the low-mass Class I/II protostar HBC 515B, through Class II and transition disk objects (HBC 515D and C, respectively), to the "diskless", intermediate- mass, pre-main sequence binary HBC 515A. Our Chandra/ACIS imaging establishes that all five components are X-ray sources, with HBC 515A - a subarcsecond-separation binary that is partially resolved by Chandra - being the dominant X-ray source. We detect an X-ray flare associated with HBC 515B. In the SMA imaging, HBC 515B is detected as a strong 1.3 mm continuum emission source; a second, weaker mm continuum source is coincident with the position of the transition disk object HBC 515C. These results strongly support the protostellar nature of HBC 515B, and firmly establish HBC 515A as a member of the rare class of relatively massive, X-ray luminous "weak-lined T Tauri stars" that are binaries and have shed their disks at very early stages of pre-MS evolution. The coexistence of two such disparate objects within a single, presumably coeval multiple YSO system highlights the influence of pre- MS star mass, binarity, and X-ray luminosity in regulating the lifetimes of circumstellar, planet-forming disks and the timescales of star-disk interactions.Comment: Accepted for publication in A&A; 11 pages, 5 figure

    Star Formation in Orion's L1630 Cloud: an Infrared and Multi-epoch X-ray Study

    Full text link
    X-ray emission is characteristic of young stellar objects (YSOs) and is known to be highly variable. We investigate, via an infrared and multi-epoch X-ray study of the L1630 dark cloud, whether and how X-ray variability in young stellar objects is related to protostellar evolutionary state. We have analyzed 11 Chandra X-ray Observatory observations, obtained over the course of four years and totaling ~240 ks exposure time, targeting the eruptive Class I YSO V1647 Ori in L1630. We used 2MASS and Spitzer data to identify and classify IR counterparts to L1630 X-ray sources and identified a total of 52 X-ray emitting YSOs with IR counterparts, including 4 Class I sources and 1 Class 0/I source. We have detected cool (< 3 MK) plasma, possibly indicative of accretion shocks, in three classical T Tauri stars. A subsample of 27 X-ray-emitting YSOs were covered by 9 of the 11 Chandra observations targeting V1647 Ori and vicinity. For these 27 YSOs, we have constructed X-ray light curves spanning approximately four years. These light curves highlight the variable nature of pre-main sequence X-ray emitting young stars; many of the L1630 YSOs vary by orders of magnitude in count rate between observations. We discuss possible scenarios to explain apparent trends between various X-ray spectral properties, X-ray variance and YSO classification.Comment: Accepted for publication in ApJS; 52 pages, 20 figure

    Evidence for Variable, Correlated X-ray and Optical/IR Extinction toward the Nearby, Pre-main Sequence Binary TWA 30

    Get PDF
    We present contemporaneous XMM-Newton X-ray and ground-based optical/near-IR spectroscopic observations of the nearby (D42D \approx 42 pc), low-mass (mid-M) binary system TWA 30A and 30B. The components of this wide (separation \sim3400 AU) binary are notable for their nearly edge-on disk viewing geometries, high levels of variability, and evidence for collimated stellar outflows. We obtained XMM-Newton X-ray observations of TWA 30A and 30B in 2011 June and July, accompanied (respectively) by IRTF SpeX (near-IR) and VLT XSHOOTER (visible/near-IR) spectroscopy obtained within \sim20 hours of the X-ray observations. TWA 30A was detected in both XMM-Newton observations at relatively faint intrinsic X-ray luminosities (LXL_{X}\sim8×10278\times10^{27} ergerg s1s^{-1}) compared to stars of similar mass and age . The intrinsic (0.15-2.0 keV) X-ray luminosities measured in 2011 had decreased by a factor 20-100 relative to a 1990 (ROSAT) X-ray detection. TWA 30B was not detected, and we infer an upper limit of (LXL_{X} \lesssim 3.0 ×\times 102710^{27} erg s1^{-1}). We measured a large change in visual extinction toward TWA 30A (from AV14.9A_V \approx 14.9 to AV4.7A_V \approx 4.7) between the two 2011 observing epochs, and we find evidence for a corresponding significant decrease in X-ray absorbing column (NHN_H). The apparent correlated change in AVA_V and NHN_H is suggestive of variable obscuration of the stellar photosphere by disk material composed of both gas and dust. However, in both observations, the inferred NHN_{H} to AVA_{V} ratio is lower than that typical of the ISM, suggesting that the disk is either depleted of gas or is deficient in metals in the gas phase.Comment: 10 pages, 7 figures, Accepted for publication in MNRA

    A pulsational distance to Omega Centauri based on Near-Infrared Period-Luminosity relations of RR Lyrae stars

    Full text link
    We present new Near-Infrared (J,K) magnitudes for 114 RR Lyrae stars in the globular cluster Omega Cen (NGC 5139) which we combine with data from the literature to construct a sample of 180 RR Lyrae stars with J and K mean magnitudes on a common photometric system. This is presently the largest such sample in any stellar system. We also present updated predictions for J,K-band Period-Luminosity relations for both fundamental and first-overtone RR Lyrae stars, based on synthetic horizontal branch models with metal abundance ranging from Z=0.0001 to Z=0.004. By adopting for the Omega Cen variables with measured metal abundances an alpha-element enhancement of a factor of 3 (about 0.5 dex) with respect to iron we find a true distance modulus of 13.70 (with a random error of 0.06 and a systematic error of 0.06), corresponding to a distance d=5.5 Kpc (with both random and systematic errors equal to 0.03 Kpc). Our estimate is in excellent agreement with the distance inferred for the eclipsing binary OGLEGC-17, but differ significantly from the recent distance estimates based on cluster dynamics and on high amplitude Delta Scuti stars.Comment: 24 pages, 7 figures, accepted for publication on The Astrophysical Journa

    The ALMA Early Science View of FUor/EXor objects. III. The Slow and Wide Outflow of V883 Ori

    Get PDF
    We present Atacama Large Millimeter/ sub-millimeter Array (ALMA) observations of V883 Ori, an FU Ori object. We describe the molecular outflow and envelope of the system based on the 12^{12}CO and 13^{13}CO emissions, which together trace a bipolar molecular outflow. The C18^{18}O emission traces the rotational motion of the circumstellar disk. From the 12^{12}CO blue-shifted emission, we estimate a wide opening angle of \sim 150^{^{\circ}} for the outflow cavities. Also, we find that the outflow is very slow (characteristic velocity of only 0.65 km~s1^{-1}), which is unique for an FU Ori object. We calculate the kinematic properties of the outflow in the standard manner using the 12^{12}CO and 13^{13}CO emissions. In addition, we present a P Cygni profile observed in the high-resolution optical spectrum, evidence of a wind driven by the accretion and being the cause for the particular morphology of the outflows. We discuss the implications of our findings and the rise of these slow outflows during and/or after the formation of a rotationally supported disk.Comment: 12 pages, 7 figures, 2 tables. Accepte
    corecore