17 research outputs found
The Integrative Taxonomic Approach Reveals Host Specific Species in an Encyrtid Parasitoid Species Complex
Integrated taxonomy uses evidence from a number of different character types to delimit species and other natural groupings. While this approach has been advocated recently, and should be of particular utility in the case of diminutive insect parasitoids, there are relatively few examples of its application in these taxa. Here, we use an integrated framework to delimit independent lineages in Encyrtus sasakii (Hymenoptera: Chalcidoidea: Encyrtidae), a parasitoid morphospecies previously considered a host generalist. Sequence variation at the DNA barcode (cytochrome c oxidase I, COI) and nuclear 28S rDNA loci were compared to morphometric recordings and mating compatibility tests, among samples of this species complex collected from its four scale insect hosts, covering a broad geographic range of northern and central China. Our results reveal that Encyrtus sasakii comprises three lineages that, while sharing a similar morphology, are highly divergent at the molecular level. At the barcode locus, the median K2P molecular distance between individuals from three primary populations was found to be 11.3%, well outside the divergence usually observed between Chalcidoidea conspecifics (0.5%). Corroborative evidence that the genetic lineages represent independent species was found from mating tests, where compatibility was observed only within populations, and morphometric analysis, which found that despite apparent morphological homogeneity, populations clustered according to forewing shape. The independent lineages defined by the integrated analysis correspond to the three scale insect hosts, suggesting the presence of host specific cryptic species. The finding of hidden host specificity in this species complex demonstrates the critical role that DNA barcoding will increasingly play in revealing hidden biodiversity in taxa that present difficulties for traditional taxonomic approaches
A new species of encyrtid (Hymenoptera) on gall-inducing psyllids (Hemiptera) from India
Damage potential of indigenous Heteroptera species occurring on Macadamia nuts (Macadamia integrifoliaMaiden & Betche & Macadamia tetraphylla L. Johnson) in South Africa during the early and late season
Taxonomic notes on some Indian Encyrtidae (Hymenoptera: Chalcidoidea) with descriptions of a new genus and species
Contribution à la connaissance des Encyrtidae (Hymenoptera : Chalcidoidea) du Maroc, nouvelles données et comparaison avec la faune d’Afrique du Nord
Relief of neuropathic pain after spinal cord injury by brain–computer interface training
Parasitoid communities and interactions with Diuraphis noxia in Australian cereal production systems
Encyrtid Parasitoids of Soft Scale Insects: Biology, Behavior, and Their Use in Biological Control
Parasitoids of the hymenopterous family Encyrtidae are one of the most important groups of natural enemies of soft scale insects and have been used extensively in biological control. We summarize existing knowledge of the biology, ecology, and behavior of these parasitoids and how it relates to biological control. Soft scale stage/size and phenology are important determinants of host range and host utilization, which are key aspects in understanding how control by these parasitoids is exerted. Furthermore, the nutritional ecology of encyrtids and their physiological interactions with their hosts affect soft scale insect population dynamics. Lastly, the interactions among encyrtids, heteronomous parasitoids, and ants shape parasitoid species complexes and consequently have a direct impact on the biological control of soft scale insects
