319 research outputs found
Resistivity and Thermopower of Ni2.19Mn0.81Ga
In this paper, we report results of the first studies on the thermoelectric
power (TEP) of the magnetic heusler alloy NiMnGa. We explain
the observed temperature dependence of the TEP in terms of the crystal field
(CF) splitting and compare the observed behavior to that of the stoichiometric
system NiMnGa. The resistivity as a function of temperature of the two
systems serves to define the structural transition temperature, T, which is
the transition from the high temperature austenitic phase to low temperatures
the martensitic phase. Occurrence of magnetic (Curie-Weiss) and the martensitic
transition at almost the same temperature in NiMnGa has been
explained from TEP to be due to changes in the density of states (DOS) at the
Fermi level.Comment: 12 pages, 4 figures, Accepted in Physical Review B vol 70, Issue 1
Correlation between Local Structure Distortions and Martensitic Transformation in Ni-Mn-In alloys
The local structural distortions arising as a consequence of increasing Mn
content in Ni_2Mn_1+xIn_1-x (x=0, 0.3, 0.4, 0.5 and 0.6) and its effect on
martensitic transformation have been studied using Extended X-ray Absorption
Fine Structure (EXAFS) spectroscopy. Using the room temperature EXAFS at the Ni
and Mn K-edges in the above compositions, the changes associated with respect
to the local structure of these absorbing atoms are compared. It is seen that
in the alloys exhibiting martensitic transformation () there is a
significant difference between the Ni-In and Ni-Mn bond lengths even in the
austenitic phase indicating atomic volume to be the main factor in inducing
martensitic transformation in Ni-Mn-In Heusler alloys.Comment: 8 pages, 2 figure
- …
