10,106 research outputs found
Measurement of Holmium Rydberg series through MOT depletion spectroscopy
We report measurements of the absolute excitation frequencies of Ho
and odd-parity Rydberg series. The states are
detected through depletion of a magneto-optical trap via a two-photon
excitation scheme. Measurements of 162 Rydberg levels in the range
yield quantum defects well described by the Rydberg-Ritz formula. We observe a
strong perturbation in the series around due to an unidentified
interloper at 48515.47(4) cm. From the series convergence, we determine
the first ionization potential cm, which is
three orders of magnitude more accurate than previous work. This work
represents the first time such spectroscopy has been done in Holmium and is an
important step towards using Ho atoms for collective encoding of a quantum
register.Comment: 6 figure
Atom interferometry with Bose-Einstein condensates in a double-well potential
A trapped-atom interferometer was demonstrated using gaseous Bose-Einstein
condensates coherently split by deforming an optical single-well potential into
a double-well potential. The relative phase between the two condensates was
determined from the spatial phase of the matter wave interference pattern
formed upon releasing the condensates from the separated potential wells.
Coherent phase evolution was observed for condensates held separated by 13
m for up to 5 ms and was controlled by applying ac Stark shift potentials
to either of the two separated condensates.Comment: 4 pages, 4 figure
Quantum Theory of a Resonant Photonic Crystal
We present a quantum model of two-level atoms localized in a 3D lattice,
based on the Hopfield theory of exciton polaritons. In addition to a
polaritonic gap at the exciton energy, a photonic bandgap opens up at the
Brillouin zone boundary. Upon tuning the lattice period or angle of incidence
to match the photonic gap with the exciton energy, one obtains a combined
polaritonic and photonic gap as a generalization of Rabi splitting. For typical
experimental parameters, the size of the combined gap is on the order of 25
cm^{-1}, up to 10^5 times the detuned gap size. The dispersion curve contains a
branch supporting slow-light modes with vanishing exciton probability density.Comment: 4 pages, 3 figure
Demonstration of an inductively coupled ring trap for cold atoms
We report the first demonstration of an inductively coupled magnetic ring trap for cold atoms. A uniform, ac magnetic field is used to induce current in a copper ring, which creates an opposing magnetic field that is time-averaged to produce a smooth cylindrically symmetric ring trap of radius 5 mm. We use a laser-cooled atomic sample to characterize the loading efficiency and adiabaticity of the magnetic potential, achieving a vacuum-limited lifetime in the trap. This technique is suitable for creating scalable toroidal waveguides for applications in matter-wave interferometry, offering long interaction times and large enclosed areas
The Distance to the Large Magellanic Cloud from the Eclipsing Binary HV2274
The distance to the Large Magellanic Cloud (LMC) is crucial for the
calibration of the Cosmic Distance Scale. We derive a distance to the LMC based
on an analysis of ground-based photometry and HST-based spectroscopy and
spectrophotometry of the LMC eclipsing binary system HV2274. Analysis of the
optical light curve and HST/GHRS radial velocity curve provides the masses and
radii of the binary components. Analysis of the HST/FOS UV/optical
spectrophotometry provides the temperatures of the component stars and the
interstellar extinction of the system. When combined, these data yield a
distance to the binary system. After correcting for the location of HV2274 with
respect to the center of the LMC, we find d(LMC) = 45.7 +/- 1.6 kpc or DM(LMC)
= 18.30 +/- 0.07 mag. This result, which is immune to the metallicity-induced
zero point uncertainties that have plagued other techniques, lends strong
support to the ``short'' LMC distance scale as derived from a number of
independent methods.Comment: 6 pages, including 2 pages of figures. Newly available optical (B and
V) photometry has revealed -- and allowed the elimination of -- a systematic
error in the previously reported determination of E(B-V) for HV2274. The new
result is E(B-V) = 0.12 mag (as compared to the value of 0.083 reported in
the original submission) and produces a DECREASE in the distance modulus of
HV2274 by 0.12 mag. ApJ Letters, in pres
Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes
We use seismic and geodetic data both jointly and separately to constrain coseismic slip from the 12 November 1996 M_w 7.7 and 23 June 2001 M_w 8.5 southern Peru subduction zone earthquakes, as well as two large aftershocks following the 2001 earthquake on 26 June and 7 July 2001. We use all available data in our inversions: GPS, interferometric synthetic aperture radar (InSAR) from the ERS-1, ERS-2, JERS, and RADARSAT-1 satellites, and seismic data from teleseismic and strong motion stations. Our two-dimensional slip models derived from only teleseismic body waves from South American subduction zone earthquakes with M_w > 7.5 do not reliably predict available geodetic data. In particular, we find significant differences in the distribution of slip for the 2001 earthquake from models that use only seismic (teleseismic and two strong motion stations) or geodetic (InSAR and GPS) data. The differences might be related to postseismic deformation or, more likely, the different sensitivities of the teleseismic and geodetic data to coseismic rupture properties. The earthquakes studied here follow the pattern of earthquake directivity along the coast of western South America, north of 5°S, earthquakes rupture to the north; south of about 12°S, directivity is southerly; and in between, earthquakes are bilateral. The predicted deformation at the Arequipa GPS station from the seismic-only slip model for the 7 July 2001 aftershock is not consistent with significant preseismic motion
Contrast Interferometry Using Bose-Einstein Condensates to Measure h/m and the Fine Structure Constant
The kinetic energy of an atom recoiling due to absorption of a photon was
measured as a frequency using an interferometric technique called ``contrast
interferometry''. Optical standing wave pulses were used as atom-optical
elements to create a symmetric three-path interferometer with a Bose-Einstein
condensate. The recoil phase accumulated in different paths was measured using
a single-shot detection technique. The scheme allows for additional photon
recoils within the interferometer and its symmetry suppresses several random
and systematic errors including those from vibrations and ac Stark shifts. We
have measured the photon recoil frequency of sodium to ppm precision, using
a simple realization of this scheme. Plausible extensions should yield a
sufficient precision to bring within reach a ppb-level determination of
and the fine structure constant
Quantum reflection of atoms from a solid surface at normal incidence
We observed quantum reflection of ultracold atoms from the attractive
potential of a solid surface. Extremely dilute Bose-Einstein condensates of
^{23}Na, with peak density 10^{11}-10^{12}atoms/cm^3, confined in a weak
gravito-magnetic trap were normally incident on a silicon surface. Reflection
probabilities of up to 20 % were observed for incident velocities of 1-8 mm/s.
The velocity dependence agrees qualitatively with the prediction for quantum
reflection from the attractive Casimir-Polder potential. Atoms confined in a
harmonic trap divided in half by a solid surface exhibited extended lifetime
due to quantum reflection from the surface, implying a reflection probability
above 50 %.Comment: To appear in Phys. Rev. Lett. (December 2004)5 pages, 4 figure
- …
