54 research outputs found
High-Coverage Whole-Exome Sequencing Identifies Candidate Genes for Suicide in Victims with Major Depressive Disorder
We carried out whole-exome ultra-high throughput sequencing in brain samples of suicide victims who had suffered from major depressive disorder and control subjects who had died from other causes. This study aimed to reveal the selective accumulation of rare variants in the coding and the UTR sequences within the genes of suicide victims. We also analysed the potential effect of STR and CNV variations, as well as the infection of the brain with neurovirulent viruses in this behavioural disorder. As a result, we have identified several candidate genes, among others three calcium channel genes that may potentially contribute to completed suicide. We also explored the potential implication of the TGF-β signalling pathway in the pathogenesis of suicidal behaviour. To our best knowledge, this is the first study that uses whole-exome sequencing for the investigation of suicide
Tenascin-C inhibits 1 integrin-dependent cell adhesion and neurite outgrowth on fibronectin by a disialoganglioside-mediated signaling mechanism
Epidermal growth factor does not cross the blood-brain barrier
To measure the passage of epidermal growth factor (EGF) through the blood-brain barrier (BBB) 125Ilabeled EGF was injected intravenously into adult rats. The distribution of 125I-EGF in the blood and cerebrospinal fluid (CSF) was determined over a time period of several hours. Between 2 to 6 h a stable distribution of intact 125IEGF in CSF was measured to be approximately 1/500 of the blood-borne EGF, an equilibrium value below those obtained by other investigators for BBB-impermeable compounds, such as inulin and bovine serum albumin. Our data indicate that 125I-EGF, although clearly detectable in the CSF, does not cross the BBB at a higher rate or in higher quantities than would be expected from its molecular size
Recognition molecules myelin-associated glycoprotein and tenascin-C inhibit integrin-mediated adhesion of neural cells to collagen.
Because of the importance of collagens in mediating cell-substrate interactions and the association of collagens with neural recognition molecules in the peripheral nervous system, the ability of neural recognition molecules to modify the substrate properties of collagens, in particular collagen type I, for cell adhesion was determined. Two cell lines, the N2A neuroblastoma and PC12 pheochromocytoma, were investigated for their capacity to adhere to different collagen types in the absence or presence of several neural recognition molecules. Adhesion of N2A or PC12 cells and membrane vesicles from PC12 cells to collagen type I was reduced when the collagen had been preincubated prior to its application as substrate with the extracellular domain of myelin-associated glycoprotein (s-MAG) or, as control, fibroblast tenascin-C (F-tenascin). In mixture with other collagen types, s-MAG was only able to reduce the adhesiveness of collagen types III and V, but not of collagen types II and IV. F-tenascin reduced the adhesiveness of all collagen types tested. In contrast to F-tenascin, s-MAG had to be present during fibrillogenesis to exert its effect, indicating that it must be coassembled into the collagen fibril to block the binding site. Cell adhesion to collagen type I was dependent on Mg2+ or Mn2+ and inhibited by a monoclonal antibody to the alpha 1 integrin subunit. The combined observations indicate that s-MAG and F-tenascin interfere with cell binding, most probably by modifying the integrin binding site, and that the two molecules act by different mechanisms, both leading to reduction of adhesion
Early coevolution of adhesive but not antiadhesive tenascin-R ligand-receptor pairs in vertebrates: A phylogenetic study
Axon growth inhibitory CNS matrix proteins, such as tenascin-R (TN-R), have been supposed to contribute to the poor regenerative capacity of adult mammalian CNS. With regard to TN-R function in low vertebrates capable of CNS regeneration, questions of particular interest concern the (co)evolution of ligand-receptor pairs and cellular response mechanisms associated with axon growth inhibition and oligodendrocyte differentiation. We address here these questions in a series of comparative in vivo and in vitro analyses using TN-R proteins purified from different vertebrates (from fish to human). Our studies provide strong evidence that unlike TN-R of higher vertebrates, fish TN-R proteins are not repellent for fish and less repellent for mammalian neurons and do not interfere with F3/contactin- and fibronectin-mediated mammalian cell adhesion and axon growth. However, axonal repulsion is induced in fish neurons by mammalian TN-R proteins, suggesting that the intracellular inhibitory machinery induced by TN-R-F3 interactions is already present during early vertebrate evolution. In contrast to TN-R-F3, TN-R-sulfatide interactions, mediating oligodendrocyte adhesion and differentiation, are highly conserved during vertebrate evolution. Our findings thus indicate the necessity of being cautious about extrapolations of the function of ligand-receptor pairs beyond a species border and, therefore, about the phylogenetic conservation of a molecular function at the cellular/tissue level
Oral pathogens change proliferation properties of oral tumor cells by affecting gene expression of human defensins
Functional topography of the myelin-associated glycoprotein. I. Mapping of domains by electron microscopy
- …
