30 research outputs found

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE Glycated hemoglobin (HbA1c), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA1c. We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA1c levels. RESEARCH DESIGN AND METHODS We studied associations with HbA1c in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA1c loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening. RESULTS Ten loci reached genome-wide significant association with HbA1c, including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 × 10−26), HFE (rs1800562/P = 2.6 × 10−20), TMPRSS6 (rs855791/P = 2.7 × 10−14), ANK1 (rs4737009/P = 6.1 × 10−12), SPTA1 (rs2779116/P = 2.8 × 10−9) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 × 10−9), and four known HbA1c loci: HK1 (rs16926246/P = 3.1 × 10−54), MTNR1B (rs1387153/P = 4.0 × 10−11), GCK (rs1799884/P = 1.5 × 10−20) and G6PC2/ABCB11 (rs552976/P = 8.2 × 10−18). We show that associations with HbA1c are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (% HbA1c) difference between the extreme 10% tails of the risk score, and would reclassify ∼2% of a general white population screened for diabetes with HbA1c. CONCLUSIONS GWAS identified 10 genetic loci reproducibly associated with HbA1c. Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA1c levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA1c

    Apolipoprotein Proteomics for Residual Lipid-Related Risk in Coronary Heart Disease

    Get PDF
    BACKGROUND: Recognition of the importance of conventional lipid measures and the advent of novel lipid-lowering medications have prompted the need for more comprehensive lipid panels to guide use of emerging treatments for the prevention of coronary heart disease (CHD). This report assessed the relevance of 13 apolipoproteins measured using a single mass-spectrometry assay for risk of CHD in the PROCARDIS case-control study of CHD (941 cases/975 controls). METHODS: The associations of apolipoproteins with CHD were assessed after adjustment for established risk factors and correction for statin use. Apolipoproteins were grouped into 4 lipid-related classes [lipoprotein(a), low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides] and their associations with CHD were adjusted for established CHD risk factors and conventional lipids. Analyses of these apolipoproteins in a subset of the ASCOT trial (Anglo-Scandinavian Cardiac Outcomes Trial) were used to assess their within-person variability and to estimate a correction for statin use. The findings in the PROCARDIS study were compared with those for incident cardiovascular disease in the Bruneck prospective study (n=688), including new measurements of Apo(a). RESULTS: Triglyceride-carrying ApoC1, ApoC3, and ApoE (apolipoproteins) were most strongly associated with the risk of CHD (2- to 3-fold higher odds ratios for top versus bottom quintile) independent of conventional lipid measures. Likewise, ApoB was independently associated with a 2-fold higher odds ratios of CHD. Lipoprotein(a) was measured using peptides from the Apo(a)-kringle repeat and Apo(a)-constant regions, but neither of these associations differed from the association with conventionally measured lipoprotein(a). Among HDL-related apolipoproteins, ApoA4 and ApoM were inversely related to CHD, independent of conventional lipid measures. The disease associations with all apolipoproteins were directionally consistent in the PROCARDIS and Bruneck studies, with the exception of ApoM. CONCLUSIONS: Apolipoproteins were associated with CHD independent of conventional risk factors and lipids, suggesting apolipoproteins could help to identify patients with residual lipid-related risk and guide personalized approaches to CHD risk reduction

    Genome-Wide Association Scan Meta-Analysis Identifies Three Loci Influencing Adiposity and Fat Distribution

    Get PDF
    Major project or personal funding for the work described in this paper comes from the Academy of Finland (104781, 124243), ADA Smith Family Foundation Pinnacle Program, the American Diabetes Association, Arthritis Research Campaign, AstraZeneca AB, The Barts and The London Charity, Biocentrum Helsinki, Biotechnology and Biological Sciences Research Council (UK), British Heart Foundation, Camstrad, Cancer Research UK, CIDR (NIH Contract Number N01-HG- 65403), Diabetes UK, the European Commission (Framework VI: LSHG-CT-2004-518153 [EURODIA]; LSHG-CT-2004-512066 [MolPAGE]; LSHM-CT-2006-037197; LSHMCT-2003-503041; QL46-CT-2002-02629 [GENOMOS]; LSHM-CT-2007-037273; Framework VII: HEALTH-F4-2007- 201413 [ENGAGE]), the Faculty of Biology and Medicine of Lausanne, Switzerland, the Swiss National Science Foundation (Grant 33CSCO-122661, the Finnish Heart Association, the Finnish Cultural Foundation, Folkha¨lsan Research Foundation, the German National Genome Research Net, GlaxoSmithKline, the Sigrid Juselius Foundation, the Karolinska Institute, Kings College London, the Knut and Alice Wallenberg Foundation, the Medical Research Council UK (G0000934, G0000649, G0601261, G0500539, G9521010D, G0600705), MedStar Research Institute, Munich Center of Health Sciences, National Institutes of Health (US: intramural programs (1Z01-HG000024), National Institute on Aging; NHLBI (HL087679 [STAMPEED], HL084729), NIDDK (DK062370; DK072193; DK075787; DK079466; DK080145; DK067288; DK07191), NHGRI (HG02651), the Netherlands Organization for Scientific Research, the Netherlands Center of Medical Systems Biology, the Netherlands Genomics Initiative (NGI)/Netherlands Organisation for Scientific Research (NWO) (050-060-810), Novartis, Peninsula Medical School, Scottish Executive Chief Scientist’s Office, Stockholm County Council (560183), Support for Science Funding (UK); Swedish Heart-Lung Foundation, the Swedish Medical Research Council (8691), UK National Institute of Health Research, UK Department of Health Policy Research Programme, University of Oxford, Vandervell Foundation and Wellcome Trust (068545/Z/02, GR072960, GR076113, GR069224, 086596/Z/08/Z)

    A trio family study showing association of the lymphotoxin-alpha N26 (804A) allele with coronary artery disease.

    No full text
    Family-based studies to map susceptibility genes through linkage disequilibrium have been successful in early-onset diseases where parental-proband trios are readily collected, but are believed to be unworkable for late-onset diseases such as coronary artery disease (CAD). PROCARDIS is a European multicentre study that was designed to identify susceptibility genes for CAD. We have tested the transmission of a putatively functional allele, lymphotoxin-alpha N26 (804A), in more than 400 PROCARDIS trio families. The present study demonstrates association of this allele with CAD in white Europeans, a different ethnic group with a heavier CAD burden than the Japanese in which the association was initially identified, which suggests a broad relevance to CAD susceptibility. The practicalities of implementing a trio-family design for late-onset diseases are discussed
    corecore