47 research outputs found
Topological Photonics
Topology is revolutionizing photonics, bringing with it new theoretical
discoveries and a wealth of potential applications. This field was inspired by
the discovery of topological insulators, in which interfacial electrons
transport without dissipation even in the presence of impurities. Similarly,
new optical mirrors of different wave-vector space topologies have been
constructed to support new states of light propagating at their interfaces.
These novel waveguides allow light to flow around large imperfections without
back-reflection. The present review explains the underlying principles and
highlights the major findings in photonic crystals, coupled resonators,
metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1
tabl
Topological sound in active-liquid metamaterials
Liquids composed of self-propelled particles have been experimentally
realized using molecular, colloidal, or macroscopic constituents. These active
liquids can flow spontaneously even in the absence of an external drive. Unlike
spontaneous active flow, the propagation of density waves in confined active
liquids is not well explored. Here, we exploit a mapping between density waves
on top of a chiral flow and electrons in a synthetic gauge field to lay out
design principles for artificial structures termed topological active
metamaterials. We design metamaterials that break time-reversal symmetry using
lattices composed of annular channels filled with a spontaneously flowing
active liquid. Such active metamaterials support topologically protected sound
modes that propagate unidirectionally, without backscattering, along either
sample edges or domain walls and despite overdamped particle dynamics. Our work
illustrates how parity-symmetry breaking in metamaterial structure combined
with microscopic irreversibility of active matter leads to novel
functionalities that cannot be achieved using only passive materials
