212 research outputs found

    Analysis of the prtP gene encoding porphypain, a cysteine proteinase of Porphyromonas gingivalis.

    Get PDF
    The cloning and sequencing of the gene encoding porphypain, a cysteine proteinase previously isolated from detergent extracts of the Porphyromonas gingivalis W12 cell surface, are described. The prtP gene encoded a unique protein of 1,732 amino acids, including a putative signal sequence for protein secretion. The predicted molecular mass for the mature protein was 186 kDa, which was close to the observed molecular mass of 180 kDa. There was one copy of prtP in the genomes of seven P. gingivalis strains examined. The gene was located 5' to a region with a high degree of homology to the insertion element IS1126 in P. gingivalis W12. The PrtP protein had regions of high homology to HagA, a hemagglutinin of P. gingivalis, and to several purported proteinases of P. gingivalis that have Arg-X specificity. A detailed comparison of genes encoding the latter and cpgR suggested that rgp-1, prpR1, prtR, agp, cpgR, and possibly prtH were derived from identical genetic loci. Although an rgp-1-like locus was detected in seven P. gingivalis strains by Southern blot analyses, agp and cpgR were not detected, not even in the strains from which they were originally isolated. In addition, at least 20 copies of a repeat region common to PrtP, the Rgp-1-like proteins, and HagA were observed in each of the seven genomes examined. The repeat region hybridization patterns for strains W83 and W50 were very similar, and they were identical for strains 381 and ATCC 33277, providing further evidence that these strains are closely related genetically

    Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set

    Get PDF
    We report a measurement of the bottom-strange meson mixing phase \beta_s using the time evolution of B0_s -> J/\psi (->\mu+\mu-) \phi (-> K+ K-) decays in which the quark-flavor content of the bottom-strange meson is identified at production. This measurement uses the full data set of proton-antiproton collisions at sqrt(s)= 1.96 TeV collected by the Collider Detector experiment at the Fermilab Tevatron, corresponding to 9.6 fb-1 of integrated luminosity. We report confidence regions in the two-dimensional space of \beta_s and the B0_s decay-width difference \Delta\Gamma_s, and measure \beta_s in [-\pi/2, -1.51] U [-0.06, 0.30] U [1.26, \pi/2] at the 68% confidence level, in agreement with the standard model expectation. Assuming the standard model value of \beta_s, we also determine \Delta\Gamma_s = 0.068 +- 0.026 (stat) +- 0.009 (syst) ps-1 and the mean B0_s lifetime, \tau_s = 1.528 +- 0.019 (stat) +- 0.009 (syst) ps, which are consistent and competitive with determinations by other experiments.Comment: 8 pages, 2 figures, Phys. Rev. Lett 109, 171802 (2012

    Cellular localization of a Hsp90 homologue in Porphyromonas gingivalis

    Full text link
    We previously reported an association between elevated serum antibody titers to the 90-kDa human heat shock protein (Hsp90), periodontal health and colonization by Porphyromonas gingivalis . In this study, we examined the cellular localization of the Hsp90 homologue of P. gingivalis . Cultures of P. gingivalis were heat-stressed (45°C) and examined for localization of the Hsp90 homologue. Heat stress induced a 4–5-fold increase in anti-Hsp90 antibody reactivity over that of the unstressed controls. Western blot analysis revealed two bands (44 and 68 kDa) that reacted with anti-Hsp90 antibodies. The 68-kDa band was heat-inducible, while the 44-kDa band was not. Immunogold staining revealed that the Hsp90 homologue localized principally to the membrane and extracellular vesicles. Subcellular fractionation confirmed that the Hsp90 homologue was primarily membrane-associated.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72856/1/j.1574-6968.1999.tb08820.x.pd

    Natural Competence Is a Major Mechanism for Horizontal DNA Transfer in the Oral Pathogen Porphyromonas gingivalis

    Get PDF
    Porphyromonas gingivalis is a Gram-negative anaerobe that resides exclusively in the human oral cavity. Long-term colonization by P. gingivalis requires the bacteria to evade host immune responses while adapting to the changing host physiology and alterations in the composition of the oral microflora. The genetic diversity of P. gingivalis appears to reflect the variability of its habitat; however, little is known about the molecular mechanisms generating this diversity. Previously, our research group established that chromosomal DNA transfer occurs between P. gingivalis strains. In this study, we examine the role of putative DNA transfer genes in conjugation and transformation and demonstrate that natural competence mediated by comF is the dominant form of chromosomal DNA transfer, with transfer by a conjugation-like mechanism playing a minor role. Our results reveal that natural competence mechanisms are present in multiple strains of P. gingivalis, and DNA uptake is not sensitive to DNA source or modification status. Furthermore, extracellular DNA was observed for the first time in P. gingivalis biofilms and is predicted to be the major DNA source for horizontal transfer and allelic exchange between strains. We propose that exchange of DNA in plaque biofilms by a transformation-like process is of major ecological importance in the survival and persistence of P. gingivalis in the challenging oral environment

    Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    Get PDF
    Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells

    The Importance of Being an Antagonist as Well as Persistent

    Full text link
    The current work by Jain et al. (S. Jain, A.</jats:p

    Gene Expression Profile Analysis of Porphyromonas gingivalis during Invasion of Human Coronary Artery Endothelial Cells

    No full text
    Microarrays were used to identify genes of Porphyromonas gingivalis W83 differentially expressed during invasion of primary human coronary artery endothelial cells. Analyses of microarray images indicated that 62 genes were differentially regulated. Of these, 11 genes were up-regulated and 51 were down-regulated. The differential expression of 16 selected genes was confirmed by real-time PCR

    Atherosclerosis microbiome: upcoming target for vaccine and drug development

    No full text
    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in adults and is one critical area of the medical sciences. Atherosclerosis is the main underlying pathology and is characterized by chronic inflammation of the arterial walls. The current treatment modalities for CVD target hypertension, hyperlipidemia and hemostasis, and suppress inflammation without directly addressing the origin of inflammation. Thus, many individuals with multiple classic risk factors for CVD do not experience acute ischemic events. Moreover, myocardial infarction and stroke continue to occur in up to two-thirds of all patients. Because many cardiovascular events have not been explained by genetics or other risk factors, and multiple epidemiologic studies have consistently suggested an infectious component, the introduction of entirely novel approaches for diagnostics and treatment that target infections are acutely needed. These complementary novel approaches addressing additional manageable risk factors such as infections will be based on the concept of personalized medicine to control CVD and achieve longevity, while also increasing the quality of life. There are a variety of avenues that could enable such novel approaches. These focus on the discovery and characterization of the infective component of atherosclerosis, the atherosclerosis microbiome. Specifically, we provide an update of the latest developments in the oral microbiome and its relation to CVD
    corecore