779 research outputs found
Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment
A Hadron Blind Detector (HBD) has been developed, constructed and
successfully operated within the PHENIX detector at RHIC. The HBD is a
Cherenkov detector operated with pure CF4. It has a 50 cm long radiator
directly coupled in a window- less configuration to a readout element
consisting of a triple GEM stack, with a CsI photocathode evaporated on the top
surface of the top GEM and pad readout at the bottom of the stack. This paper
gives a comprehensive account of the construction, operation and in-beam
performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method
Why Germany fell out of love with Europe
This essay analyses the central role that Germany has and continues to play in the European Union. The author looks back at how Germany acted as a Â?benevolent hegemonÂ? through the adoption of the single currency and the creation of the European Monetary Union. Against this background, he examines the German response to the recent euro crisis, in particular the crucial weekend of May 8-9 2010. He asks if Germany is still willing to be the benevolent hegemon and save the euro from disintegration, or are the domestic implications of this role moving her away from Europe.
J/psi suppression at forward rapidity in Au+Au collisions at sqrt(s_NN)=39 and 62.4 GeV
We present measurements of the J/psi invariant yields in sqrt(s_NN)=39 and
62.4 GeV Au+Au collisions at forward rapidity (1.2<|y|<2.2). Invariant yields
are presented as a function of both collision centrality and transverse
momentum. Nuclear modifications are obtained for central relative to peripheral
Au+Au collisions (R_CP) and for various centrality selections in Au+Au relative
to scaled p+p cross sections obtained from other measurements (R_AA). The
observed suppression patterns at 39 and 62.4 GeV are quite similar to those
previously measured at 200 GeV. This similar suppression presents a challenge
to theoretical models that contain various competing mechanisms with different
energy dependencies, some of which cause suppression and others enhancement.Comment: 365 authors, 10 pages, 11 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Azimuthal anisotropy of pi^0 and eta mesons in Au+Au collisions at sqrt(s_NN)=200 GeV
The azimuthal anisotropy coefficients v_2 and v_4 of pi^0 and eta mesons are
measured in Au+Au collisions at sqrt(s_NN)=200 GeV, as a function of transverse
momentum p_T (1-14 GeV/c) and centrality. The extracted v_2 coefficients are
found to be consistent between the two meson species over the measured p_T
range. The ratio of v_4/v_2^2 for pi^0 mesons is found to be independent of p_T
for 1-9 GeV/c, implying a lack of sensitivity of the ratio to the change of
underlying physics with p_T. Furthermore, the ratio of v_4/v_2^2 is
systematically larger in central collisions, which may reflect the combined
effects of fluctuations in the initial collision geometry and finite viscosity
in the evolving medium.Comment: 384 authors, 71 institutions, 11 pages, 9 figures, and 2 tables.
Submitted to Physical Review C. Plain text data tables for the points plotted
in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations
The jet fragmentation function is measured with direct photon-hadron
correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the
photon is an excellent approximation to the initial p_T of the jet and the
ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation
function. A statistical subtraction is used to extract the direct photon-hadron
yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_
AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates
modification of the jet fragmentation function. Suppression, most likely due to
energy loss in the medium, is seen at high z_T. The fragment yield at low z_T
is enhanced at large angles. Such a trend is expected from redistribution of
the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to
Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects
The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p
collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX
experiment at the Relativistic Heavy-Ion Collider. Cross sections for the
inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per
binary collision for d+Au collisions relative to those in p+p collisions
(R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going
direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going
direction. The measured results are compared to a nuclear-shadowing model,
EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section,
sigma_br, and compared to lower energy p+A results. We also compare the results
to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity
dependence of the observed Upsilon suppression is consistent with lower energy
p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central Au Collisions at =200 GeV
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC)
reports measurements of azimuthal dihadron correlations near midrapidity in
Au collisions at =200 GeV. These measurements
complement recent analyses by experiments at the Large Hadron Collider (LHC)
involving central Pb collisions at =5.02 TeV, which
have indicated strong anisotropic long-range correlations in angular
distributions of hadron pairs. The origin of these anisotropies is currently
unknown. Various competing explanations include parton saturation and
hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies
in Au collisions compared to those seen in Pb collisions at the
LHC. The larger extracted values in Au collisions at RHIC are
consistent with expectations from hydrodynamic calculations owing to the larger
expected initial-state eccentricity compared with that from Pb
collisions. When both are divided by an estimate of the initial-state
eccentricity the scaled anisotropies follow a common trend with multiplicity
that may extend to heavy ion data at RHIC and the LHC, where the anisotropies
are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has
minor changes to text and figures in response to PRL referee suggestions.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …
