330 research outputs found
Kaiso is a genome-wide repressor of transcription that is essential for amphibian development
Methylated DNA recognition during the reversal of epigenetic silencing is regulated by cysteine and cerine residues in the Epstein-Barr Virus lytic switch protein
Epstein-Barr virus (EBV) causes infectious mononucleosis and is associated with various malignancies, including Burkitt's lymphoma and nasopharyngeal carcinoma. Like all herpesviruses, the EBV life cycle alternates between latency and lytic replication. During latency, the viral genome is largely silenced by host-driven methylation of CpG motifs and, in the switch to the lytic cycle, this epigenetic silencing is overturned. A key event is the activation of the viral BRLF1 gene by the immediate-early protein Zta. Zta is a bZIP transcription factor that preferentially binds to specific response elements (ZREs) in the BRLF1 promoter (Rp) when these elements are methylated. Zta's ability to trigger lytic cycle activation is severely compromised when a cysteine residue in its bZIP domain is mutated to serine (C189S), but the molecular basis for this effect is unknown. Here we show that the C189S mutant is defective for activating Rp in a Burkitt's lymphoma cell line. The mutant is compromised both in vitro and in vivo for binding two methylated ZREs in Rp (ZRE2 and ZRE3), although the effect is striking only for ZRE3. Molecular modeling of Zta bound to methylated ZRE3, together with biochemical data, indicate that C189 directly contacts one of the two methyl cytosines within a specific CpG motif. The motif's second methyl cytosine (on the complementary DNA strand) is predicted to contact S186, a residue known to regulate methyl-ZRE recognition. Our results suggest that C189 regulates the enhanced interaction of Zta with methylated DNA in overturning the epigenetic control of viral latency. As C189 is conserved in many bZIP proteins, the selectivity of Zta for methylated DNA may be a paradigm for a more general phenomenon
Toward high-resolution population genomics using archaeological samples
The term ‘ancient DNA’ (aDNA) is coming of age, with over 1,200 hits in the PubMed database,
beginning in the early 1980s with the studies of ‘molecular paleontology’. Rooted in cloning
and limited sequencing of DNA from ancient remains during the pre-PCR era, the field has
made incredible progress since the introduction of PCR and next-generation sequencing. Over
the last decade, aDNA analysis ushered in a new era in genomics and became the method of
choice for reconstructing the history of organisms, their biogeography, and migration routes,
with applications in evolutionary biology, population genetics, archaeogenetics, paleoepidemiology,
and many other areas. This change was brought by development of new strategies
for coping with the challenges in studying aDNA due to damage and fragmentation, scarce
samples, significant historical gaps, and limited applicability of population genetics methods. In this review, we describe the state-of-the-art achievements in aDNA studies, with particular focus
on human evolution and demographic history. We present the current experimental and theoretical
procedures for handling and analysing highly degraded aDNA. We also review the challenges
in the rapidly growing field of ancient epigenomics. Advancement of aDNA tools and
methods signifies a new era in population genetics and evolutionary medicine research
Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline
The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline
Genome-wide nucleosome map and cytosine methylation levels of an ancient human genome.
yesEpigenetic information is available from contemporary organisms, but is difficult to track back in evolutionary time.
Here, we show that genome-wide epigenetic information can be gathered directly from next-generation sequence reads of
DNA isolated from ancient remains. Using the genome sequence data generated from hair shafts of a 4000-yr-old Paleo-
Eskimo belonging to the Saqqaq culture, we generate the first ancient nucleosome map coupled with a genome-wide
survey of cytosine methylation levels. The validity of both nucleosome map and methylation levels were confirmed by the
recovery of the expected signals at promoter regions, exon/intron boundaries, and CTCF sites. The top-scoring nucleosome
calls revealed distinct DNA positioning biases, attesting to nucleotide-level accuracy. The ancient methylation
levels exhibited high conservation over time, clustering closely with modern hair tissues. Using ancient methylation
information, we estimated the age at death of the Saqqaq individual and illustrate how epigenetic information can be used
to infer ancient gene expression. Similar epigenetic signatures were found in other fossil material, such as 110,000- to
130,000-yr-old bones, supporting the contention that ancient epigenomic information can be reconstructed from a deep
past. Our findings lay the foundation for extracting epigenomic information from ancient samples, allowing shifts in
epialleles to be tracked through evolutionary time, as well as providing an original window into modern epigenomics
Resting cells rely on the DNA helicase component MCM2 to build cilia
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues
Genomic insights into cancer-associated aberrant CpG island hypermethylation
Carcinogenesis is thought to occur through a combination of mutational and epimutational events that disrupt key pathways regulating cellular growth and division. The DNA methylomes of cancer cells can exhibit two striking differences from normal cells; a global reduction of DNA methylation levels and the aberrant hypermethylation of some sequences, particularly CpG islands (CGIs). This aberrant hypermethylation is often invoked as a mechanism causing the transcriptional inactivation of tumour suppressor genes that directly drives the carcinogenic process. Here, we review our current understanding of this phenomenon, focusing on how global analysis of cancer methylomes indicates that most affected CGI genes are already silenced prior to aberrant hypermethylation during cancer development. We also discuss how genome-scale analyses of both normal and cancer cells have refined our understanding of the elusive mechanism(s) that may underpin aberrant CGI hypermethylation
Sequence-specific recognition of methylated DNA by human zinc-finger proteins
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist
Role of intestinal mucin-2 in the effectiveness of the treatment of Helicobacter spp. infection in laboratory mice
Abnormal synthesis of the main intestinal proteoglycan mucin-2 is typical of ulcerative colitis and Crohn’s disease in humans. Those morphological changes of the mucus layer affect the diversity of the intestinal microflora. Antibiotics may be ineffective or even dangerous to humans or animals deficient for mucin-2 because of the risk of sepsis and chronic inflammation. In this study, we investigated the potential of antibiotics (clarithromycin, amoxicillin, and metronidazole) in elimination of pathogenic infection from Muc2 knockout mice (Muc2–/–). We assayed the population sizes of pathogens (Helicobacter spp.) and symbiotic (E. coli) bacteria in the intestines of animals as a criterion of antibiotic efficacy. The damaging effect of antibacterial treatment on the host body was estimated from their survival rate. Three antibiotics were ineffective in the elimination of Helicobacter spp. from mucin-2-deficient mice. Moreover, the mortality of Muc2 knockout mice during the antibacterial treatment was 60 %. The survival of wild-type mice (C57BL/6J) during the treatment was 100 %. The weight of wild-type mice showed no decrease during the treatment. The Helicobacter spp. pathogen was fully eradicated from wild-type mice. Thus, therapy of Helicobacter spp. infection in mucin-2 deficient animals is not only poorly efficient but even deadly. The high susceptibility to antibiotics allows Muc2 knockout mice to be used as a test model to evaluate the pharmacological safety of new antibiotics
- …
