125 research outputs found

    Phase diagram of two-component bosons on an optical lattice

    Full text link
    We present a theoretical analysis of the phase diagram of two--component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using the new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition making it first order in extended regions of the phase diagram. For Mott states with even occupation we find that the competition between effective Heisenberg exchange and spin-dependent on--site interaction leads to an additional phase transition from a Mott insulator with no broken symmetries into a spin-ordered insulator

    Superfluidity of Bose-Einstein Condensate in An Optical Lattice: Landau-Zener Tunneling and Dynamical Instability

    Full text link
    Superflow of Bose-Einstein condensate in an optical lattice is represented by a Bloch wave, a plane wave with periodic modulation of the amplitude. We review the theoretical results on the interaction effects in the energy dispersion of the Bloch waves and in the linear stability of such waves. For sufficiently strong repulsion between the atoms, the lowest Bloch band develops a loop at the edge of the Brillouin zone, with the dramatic consequence of a finite probability of Landau-Zener tunneling even in the limit of a vanishing external force. Superfluidity can exist in the central region of the Brillouin zone in the presence of a repulsive interaction, beyond which Landau instability takes place where the system can lower its energy by making transition into states with smaller Bloch wavenumbers. In the outer part of the region of Landau instability, the Bloch waves are also dynamically unstable in the sense that a small initial deviation grows exponentially in time. In the inner region of Landau instability, a Bloch wave is dynamically stable in the absence of persistent external perturbations. Experimental implications of our findings will be discussed.Comment: A new section on tight-binding approximation is added with a new figur

    Collective dynamics of interacting Ising spins: Exact results for the Bethe lattice

    Get PDF
    We study the low temperature dynamics in films made of molecular magnets, i. e. crystals composed of molecules having large electronic spin S in their ground state. The electronic spin dynamics is mediated by coupling to a nuclear spin bath; this coupling allows transitions for a small fraction of electronic spins between their two energy minima, Sz = ±S, under resonant conditions when the change of the Zeeman energy in magnetic dipolar field of other electronic spins is compensated by interaction with nuclear spins. Transitions of resonant spins can result in opening or closing resonances in their neighbors leading to the collective dynamics at sufficiently large density P0 of resonant spins. We formulate and solve the equivalent dynamic percolation problem for the Bethe lattice (BL) of spins interacting with z neighbors and find that depending on the density of resonant spins P0 and the number of neighbors z the system has either one (2 \u3c z \u3c 6) or two (z 6) kinetic transitions at P0 = Pc1 e-1/3/(3z) and P0 = Pc2 e-1/z. The former transition is continuous and associated with the formation of an infinite cluster of coupled resonant spins similarly to the static percolation transition occurring at P0 1/z. The latter transition, z \u3e 5, is discontinuous and associated with the instantaneous increase in the density of resonant spins from the small value 1/z to near unity. Experimental implications of our results are discussed

    Superclimbing modes in transverse quantum fluids: signature statistical and dynamical features

    Full text link
    Superclimbing modes are hallmark degrees of freedom of transverse quantum fluids describing wide superfluid one-dimensional interfaces and/or edges with negligible Peierls barrier. We report the first direct numeric evidence of quantum shape fluctuations -- caused by superclimbing modes -- in simple lattice models, as well as at the free edge of an incomplete solid monolayer of 4^4He adsorbed on graphite. Our data unambiguously reveals the defining feature of the superclimbing modes -- canonical conjugation of the edge displacement field to the field of superfluid phase -- and its unexpected implication, i.e., that superfluid stiffness can be inferred from density snapshots.11 pages, 9 figure

    Sign-alternating interaction mediated by strongly correlated lattice bosons

    Get PDF
    We reveal a generic mechanism of generating sign-alternating intersite interactions mediated by strongly correlated lattice bosons. The ground-state phase diagram of the two-component hard-core Bose–Hubbard model on a square lattice at half-integer filling factor for each component, obtained by worm algorithm Monte Carlo simulations, is strongly modified by these interactions and features the solid+superfluid (SF) phase for strong asymmetry between the hopping amplitudes. The new phase is a direct consequence of the effective nearest-neighbor repulsion between \u27heavy\u27 atoms mediated by the \u27light\u27 SF component. Due to their sign-alternating character, mediated interactions lead to a rich variety of yet to be discovered quantum phases

    Quantum nanomagnets and nuclear spins: an overview

    Full text link
    This mini-review presents a simple and accessible summary on the fascinating physics of quantum nanomagnets coupled to a nuclear spin bath. These chemically synthesized systems are an ideal test ground for the theories of decoherence in mesoscopic quantum degrees of freedom, when the coupling to the environment is local and not small. We shall focus here on the most striking quantum phenomenon that occurs in such nanomagnets, namely the tunneling of their giant spin through a high anisotropy barrier. It will be shown that perturbative treatments must be discarded, and replaced by a more sophisticated formalism where the dynamics of the nanomagnet and the nuclei that couple to it are treated together from the beginning. After a critical review of the theoretical predictions and their experimental verification, we continue with a set of experimental results that challenge our present understanding, and outline the importance of filling also this last gap in the theory.Comment: 14 pages, 3 figures. Chapter in the Proceedings of the 2006 Les Houches summer school "Quantum Magnetism", ed. B. Barbara & Y. Imry, Springer (2007

    VEGF and eNOS genes polymorphism features in patients with diabetes mellitus with and without initial non-proliferative diabetic retinopathy

    Get PDF
    The endothelial NO synthase (eNOS) and vascular endothelial growth factor (VEGF) imbalance and the polymorphism of these genes may be the predisposition for diabetic retinopathy (DR) development and progression.The aim: to analyze VEGF (rs699947 and rs3025039) and eNOS (rs2070744) genes polymorphism and their combinations in patients with type 2 diabetes mellitus (DM2) with and without initial non-proliferative DR.Materials and methods. The study included 200 patients with type 2 diabetes (155 women and 45 men, age – 43–70 years): 111 people without and 89 people with DR. The polymorphism of the regulatory regions of VEGF (rs699947 and rs3025039) and eNOS (rs2070744) genes was studied using restriction fragment length polymorphism analysis and TaqMan Real-Time PCR by. Statistical processing was carried out using the software packages Statistica 10.0, SPSS Statistics 23 and the package of original programs for volumetric processing of bioinformation.Results. The VEGF-2578 heterozygosity and two complex genotypes – VEGF-2578CA:VEGF+936CC and NOS3-786CT:VEGF-2578CA:VEGF+936CC – signifi cantly decreased in patients with DR. The predisposition to early DR development to minor genotype of eNOS gene in the NOS3-786CC:VEGF+936CT complex and signifi cantly decreased the homozygous wild-type eNOS genotype in DM2 patients with ophthalmopathology were shown. NOS3-86TT:VEGF2578AA genotype signifi cantly decreased in group with retinopathy developing and the glycated hemoglobin high level.Conclusion. Along with the clinical risk factors for the development of DR in DM2, the genetic polymorphism of the regulatory regions of the genes analyzed by us has a signifi cant weight. When analyzing potential genetic markers, it is important to consider possible joint epistatic/hypostatic effects. The complex analysis of polymorphic gene can help early prognosis of the DR development
    corecore