1,951 research outputs found

    Quantization of generic chaotic 3D billiard with smooth boundary II: structure of high-lying eigenstates

    Full text link
    This is the first survey of highly excited eigenstates of a chaotic 3D billiard. We introduce a strongly chaotic 3D billiard with a smooth boundary and we manage to calculate accurate eigenstates with sequential number (of a 48-fold desymmetrized billiard) about 45,000. Besides the brute-force calculation of 3D wavefunctions we propose and illustrate another two representations of eigenstates of quantum 3D billiards: (i) normal derivative of a wavefunction over the boundary surface, and (ii) ray - angular momentum representation. The majority of eigenstates is found to be more or less uniformly extended over the entire energy surface, as expected, but there is also a fraction of strongly localized - scarred eigenstates which are localized either (i) on to classical periodic orbits or (ii) on to planes which carry (2+2)-dim classically invariant manifolds, although the classical dynamics is strongly chaotic and non-diffusive.Comment: 12 pages in plain Latex (5 figures in PCL format available upon request) Submitted to Phys.Lett.

    Quantum invariants of motion in a generic many-body system

    Full text link
    Dynamical Lie-algebraic method for the construction of local quantum invariants of motion in non-integrable many-body systems is proposed and applied to a simple but generic toy model, namely an infinite kicked tVt-V chain of spinless fermions. Transition from integrable via {pseudo-integrable (\em intermediate}) to quantum ergodic (quantum mixing) regime in parameter space is investigated. Dynamical phase transition between ergodic and intermediate (neither ergodic nor completely integrable) regime in thermodynamic limit is proposed. Existence or non-existence of local conservation laws corresponds to intermediate or ergodic regime, respectively. The computation of time-correlation functions of typical observables by means of local conservation laws is found fully consistent with direct calculations on finite systems.Comment: 4 pages in REVTeX with 5 eps figures include

    Explicit solution of the Lindblad equation for nearly isotropic boundary driven XY spin 1/2 chain

    Full text link
    Explicit solution for the 2-point correlation function in a non-equilibrium steady state of a nearly isotropic boundary-driven open XY spin 1/2 chain in the Lindblad formulation is provided. A non-equilibrium quantum phase transition from exponentially decaying correlations to long-range order is discussed analytically. In the regime of long-range order a new phenomenon of correlation resonances is reported, where the correlation response of the system is unusually high for certain discrete values of the external bulk parameter, e.g. the magnetic field.Comment: 20 Pages, 5 figure

    Exact time-correlation functions of quantum Ising chain in a kicking transversal magnetic field

    Full text link
    Spectral analysis of the {\em adjoint} propagator in a suitable Hilbert space (and Lie algebra) of quantum observables in Heisenberg picture is discussed as an alternative approach to characterize infinite temperature dynamics of non-linear quantum many-body systems or quantum fields, and to provide a bridge between ergodic properties of such systems and the results of classical ergodic theory. We begin by reviewing some recent analytic and numerical results along this lines. In some cases the Heisenberg dynamics inside the subalgebra of the relevant quantum observables can be mapped explicitly into the (conceptually much simpler) Schr\" odinger dynamics of a single one-(or few)-dimensional quantum particle. The main body of the paper is concerned with an application of the proposed method in order to work out explicitly the general spectral measures and the time correlation functions in {\em a quantum Ising spin 1/2 chain in a periodically kicking transversal magnetic field}, including the results for the simpler autonomous case of a static magnetic field in the appropriate limit. The main result, being a consequence of a purely continuous non-trivial part of the spectrum, is that the general time-correlation functions decay to their saturation values as t3/2t^{-3/2}.Comment: 12 pages with 4 eps-figure

    PT-symmetric quantum Liouvillian dynamics

    Full text link
    We discuss a combination of unitary and anti-unitary symmetry of quantum Liouvillian dynamics, in the context of open quantum systems, which implies a D2 symmetry of the complex Liovillean spectrum. For sufficiently weak system-bath coupling it implies a uniform decay rate for all coherences, i.e. off-diagonal elements of the system's density matrix taken in the eigenbasis of the Hamiltonian. As an example we discuss symmetrically boundary driven open XXZ spin 1/2 chains.Comment: Note [18] added with respect to a published version, explaining the symmetry of the matrix V [eq. (14)

    Parametric statistics of zeros of Husimi representations of quantum chaotic eigenstates and random polynomials

    Full text link
    Local parametric statistics of zeros of Husimi representations of quantum eigenstates are introduced. It is conjectured that for a classically fully chaotic systems one should use the model of parametric statistics of complex roots of Gaussian random polynomials which is exactly solvable as demonstrated below. For example, the velocities (derivatives of zeros of Husimi function with respect to an external parameter) are predicted to obey a universal (non-Maxwellian) distribution dP(v)/dv2=2/(πσ2)(1+v2/σ2)3,{d P(v)}/{dv^2} = 2/(\pi\sigma^2)(1 + |v|^2/\sigma^2)^{-3}, where σ2\sigma^2 is the mean square velocity. The conjecture is demonstrated numerically in a generic chaotic system with two degrees of freedom. Dynamical formulation of the ``zero-flow'' in terms of an integrable many-body dynamical system is given as well.Comment: 13 pages in plain Latex (1 figure available upon request
    corecore