267 research outputs found

    The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle

    Get PDF
    Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis

    Characterization of an emergent clone of enteroinvasive Escherichia coli circulating in Europe

    Get PDF
    Enteroinvasive Escherichia coli (EIEC) cause intestinal illness indistinguishable from that caused by Shigella, mainly in developing countries. Recently an upsurge of cases of EIEC infections has been observed in Europe, with two large outbreaks occurring in Italy and in the United Kingdom. We have characterized phenotypically and genotypically the strains responsible for these epidemics together with an additional isolate from a sporadic case isolated in Spain. The three isolates belonged to the same rare serotype O96:H19 and were of sequence type ST-99, never reported before in EIEC or Shigella. The EIEC strains investigated possessed all the virulence genes harboured on the large plasmid conferring the invasive phenotype to EIEC and Shigella while showing only some of the known chromosomal virulence genes and none of the described pathoadaptative mutations. At the same time, they displayed motility abilities and biochemical requirements resembling more closely those of the non-pathogenic E. coli rather than the EIEC and Shigella strains used as reference. Our observations suggested that the O96:H19 strains belong to an emerging EIEC clone, which could be the result of a recent event of acquisition of the invasion plasmid by commensal E. coli

    The Varied Role of Efflux Pumps of the MFS Family in the Interplay of Bacteria with Animal and Plant Cells

    Get PDF
    Efflux pumps represent an important and large group of transporter proteins found in all organisms. The importance of efflux pumps resides in their ability to extrude a wide range of antibiotics, resulting in the emergence of multidrug resistance in many bacteria. Besides antibiotics, multidrug efflux pumps can also extrude a large variety of compounds: Bacterial metabolites, plant-produced compounds, quorum-sensing molecules, and virulence factors. This versatility makes efflux pumps relevant players in interactions not only with other bacteria, but also with plant or animal cells. The multidrug efflux pumps belonging to the major facilitator superfamily (MFS) are widely distributed in microbial genomes and exhibit a large spectrum of substrate specificities. Multidrug MFS efflux pumps are present either as single-component transporters or as tripartite complexes. In this review, we will summarize how the multidrug MFS efflux pumps contribute to the interplay between bacteria and targeted host cells, with emphasis on their role in bacterial virulence, in the colonization of plant and animal host cells and in biofilm formation. We will also address the complexity of these interactions in the light of the underlying regulatory networks required for the effective activation of efflux pump genes

    The Multifaceted Activity of the VirF Regulatory Protein in the Shigella Lifestyle

    Get PDF
    Shigella is a highly adapted human pathogen, mainly found in the developing world and causing a severe enteric syndrome. The highly sophisticated infectious strategy of Shigella banks on the capacity to invade the intestinal epithelial barrier and cause its inflammatory destruction. The cellular pathogenesis and clinical presentation of shigellosis are the sum of the complex action of a large number of bacterial virulence factors mainly located on a large virulence plasmid (pINV). The expression of pINV genes is controlled by multiple environmental stimuli through a regulatory cascade involving proteins and sRNAs encoded by both the pINV and the chromosome. The primary regulator of the virulence phenotype is VirF, a DNA-binding protein belonging to the AraC family of transcriptional regulators. The virF gene, located on the pINV, is expressed only within the host, mainly in response to the temperature transition occurring when the bacterium transits from the outer environment to the intestinal milieu. VirF then acts as anti-H-NS protein and directly activates the icsA and virB genes, triggering the full expression of the invasion program of Shigella. In this review we will focus on the structure of VirF, on its sophisticated regulation, and on its role as major player in the path leading from the non-invasive to the invasive phenotype of Shigella. We will address also the involvement of VirF in mechanisms aimed at withstanding adverse conditions inside the host, indicating that this protein is emerging as a global regulator whose action is not limited to virulence systems. Finally, we will discuss recent observations conferring VirF the potential of a novel antibacterial target for shigellosis

    The Role of Primary Cilia in the Pathogenesis of ADPKD

    Get PDF

    AcrAB efflux pump impacts on the survival of adherent-invasive Escherichia coli strain LF82 inside macrophages

    Get PDF
    The tripartite complex AcrAB-TolC is the major RND pump in Escherichia coli and other Enterobacteriaceae. It consists of the AcrB transporter, which is embedded in the inner membrane, the AcrA adapter located in the periplasm, and the channel protein TolC responsible for the transport of substrates towards the extracellular environment. Besides conferring resistance to many classes of antibiotics, AcrAB plays a role in the pathogenesis and virulence of several bacterial pathogens. Here we report that the AcrAB pump heavily affects the infection process of the LF82 strain, the prototype of Adherent-Invasive Escherichia coli (AIEC) which are highly abundant in the ileal mucosa of Chron disease patients. We found that the deletion of genes encoding AcrA and/or AcrB leads to decreased survival of LF82 within macrophages. Ectopic AcrAB expression in a acrAB defective mutant restores the wild type condition. Furthermore, we demonstrate that inhibition of AcrB and replacement of the transporter with an unfunctional AcrB also interfere with bacterial viability inside macrophages. Overall, these data suggest a pivotal role of the AcrAB efflux pump in bacteria-host cell interactions also in AIEC

    Endothelial repair in stented arteries is accelerated by inhibition of Rho-associated protein kinase.

    Get PDF
    AIMS: Stent deployment causes endothelial cell (EC) denudation, which promotes in-stent restenosis and thrombosis. Thus endothelial regrowth in stented arteries is an important therapeutic goal. Stent struts modify local hemodynamics, however the effects of flow pertubation on EC injury and repair are incompletely understood. By studying the effects of stent struts on flow and EC migration we identified an intervention that promotes endothelial repair in stented arteries. METHODS AND RESULTS: In vitro and in vivo models were developed to monitor endothelialization under flow and the influence of stent struts. A 2D parallel-plate flow chamber with 100 μm ridges arranged perpendicular to the flow was used. Live cell imaging coupled to computational fluid dynamic simulations revealed that EC migrate in the direction of flow upstream from the ridges but subsequently accumulate downstream from ridges at sites of bidirectional flow. The mechanism of EC trapping by bidirectional flow involved reduced migratory polarity associated with altered actin dynamics. Inhibition of Rho-associated protein kinase (ROCK) enhanced endothelialization of ridged surfaces by promoting migratory polarity under bidirectional flow (p<0.01). To more closely mimic the in vivo situation we cultured EC on the inner surface of polydimethylsiloxane tubing containing Coroflex Blue stents (65 μm struts) and monitored migration. ROCK inhibition significantly enhanced EC accumulation downstream from struts under flow (p<0.05). We investigated the effects of ROCK inhibition on re-endothelialization in vivo using a porcine model of EC denudation and stent placement. En face staining and confocal microscopy revealed that inhibition of ROCK using fasudil (30 mg/day via osmotic minipump) significantly increased re-endothelialization of stented carotid arteries (p<0.05). CONCLUSIONS: Stent struts delay endothelial repair by generating localised bidirectional flow which traps migrating EC. ROCK inhibitors accelerate endothelial repair of stented arteries by enhancing EC polarity and migration through regions of bidirectional flow

    Diffusible signal factors (DSFs) bind and repress VirF, the leading virulence activator of Shigella flexneri

    Get PDF
    Shigella, the aetiological agent of human bacillary dysentery, controls the expression of its virulence determinants through an environmentally stimulated cascade of transcriptional activators. VirF is the leading activator and is essential for proper virulence expression. In this work, we report on in vitro and in vivo experiments showing that two autoinducers of the DSF family, XcDSF and BDSF interact with the jelly roll module of VirF causing its inhibition and affecting the expression of the entire virulence system of Shigella, including its ability to invade epithelial cells. We propose a molecular model explaining how the binding of XcDSF and BDSF causes inhibition of VirF by preventing its dimerization. Overall, our experimental results suggest that XcDSF and BDSF may contribute to ”colonisation resistance” in the human gut or, alternatively, may be exploited for the fine-tuning of Shigella virulence expression as the bacterium migrates from the lumen to approach the intestinal mucosa. Our findings also stress how a detailed understanding of the interaction of DSF ligands with VirF may contribute to the rational development of innovative antivirulence drugs to treat shigellosis

    A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri

    Get PDF
    The virulence gene icsA of Shigella flexneri encodes an invasion protein crucial for host colonization by pathogenic bacteria. Within the intergenic region virA-icsA, we have discovered a new gene that encodes a non-translated antisense RNA (named RnaG), transcribed in cis on the complementary strand of icsA. In vitro transcription assays show that RnaG promotes premature termination of transcription of icsA mRNA. Transcriptional inhibition is also observed in vivo by monitoring the expression profile in Shigella by real-time polymerase chain reaction and when RnaG is provided in trans. Chemical and enzymatic probing of the leader region of icsA mRNA either free or bound to RnaG indicate that upon hetero-duplex formation an intrinsic terminator, leading to transcription block, is generated on the nascent icsA mRNA. Mutations in the hairpin structure of the proposed terminator impair the RnaG mediated-regulation of icsA transcription. This study represents the first evidence of transcriptional attenuation mechanism caused by a small RNA in Gram-negative bacteria. We also present data on the secondary structure of the antisense region of RnaG. In addition, alternatively silencing icsA and RnaG promoters, we find that transcription from the strong RnaG promoter reduces the activity of the weak convergent icsA promoter through the transcriptional interference regulation

    Centaurea triumfetii essential oil chemical composition, comparative analysis, and antimicrobial activity of selected compounds

    Get PDF
    The essential oils from the Centaurea genus are well known for their pharmacological properties. The most abundant and dominant chemical components in Centaurea essential oils are ß-caryophyllene, hexadecanoic acid, spathulenol, pentacosane, caryophyllene oxide, and phytol. However, whether these dominant components are the key drivers for observed antimicrobial activity remains unclear. Thus, the aim of this study was dual. Here we provide comprehensive, literature-based data to correlate the chemical compounds in Centaurea essential oils with the tested antimicrobial activity. Secondly, we characterized the essential oil of Centaurea triumfettii All. squarrose knapweed using coupled system gas chromatography-mass spectrometry and tested its phytochemicals for antimicrobial activity against E. coli and S. epidermis using disc diffusion assay and monitoring their growth in Muller Hinton broth. The most abundant compounds in C. triumfettii essential oil were hexadecanoic acid (11.1%), spathulenol (10.8%), longifolene (8.8%), germacrene D (8.4%), aromadendrene oxide (6.0%) and linoleic acid (5.3%). Based on our analysis of literature data from other Centaurea essential oils, they were positively correlated with antimicrobial activity. Using an agar disk diffusion method, tested chemical constituents did not show experimental evidence to support this positive correlation to antimicrobial activity when we tested them as pure components. The antibacterial effect of essential oil constituents may be related to a complex synergistic, rather than a single component as suggested by performed network pharmacology analysis, underlying the theoretical interactions between the essential oil phytochemicals listed as potentially responsible for antimicrobial activity and should be confirmed in further in-depth studies. This is the first report on the comparative analysis of Centaurea essential oils with good antimicrobial activity, as well as the first analysis of chemical components of the essential oil from C. triumfettii and the first report of antimicrobial activity of the representative, pure components: aromadendrene, germacrene D, spathulenol, longifolene, and the mixture of selected chemical compounds. This work contributes to the body of knowledge on the genus Centaurea and C. triumfettii species
    corecore