2,129 research outputs found

    On the use of the Jander equation in cement hydration modelling

    Get PDF
    The equation of Jander [W. Jander, Z. Anorg. Allg. Chem. (1927) 163: 1-30] is often used to describe the kinetics of dissolution of solid cement grains, as a component of mathematical descriptions of the broader cement hydration process. The Jander equation can be presented as kt/R2 =[1-(1-α) (1/3) ]2 where k is a constant, t is time, R is the initial radius of a solid reactant particle, and α is the fractional degree of reaction. This equation is attractive for its simplicity and apparently straightforward derivation. However, the derivation of the Jander equation involves an approximation related to neglect of particle surface curvature which means that it is strictly not correct for anything beyond a very small extent of reaction. This is well documented in the broader literature, but this information has not been effectively propagated to the field of cement science, which means that researchers are continuing to base models on this erroneous equation. It is recommended that if the assumptions of diffusion control and unchanging overall particle size which lead to the selection of the Jander equation are to be retained, it is preferable to instead use the Ginstling-Brounshtein equation [A.M. Ginstling, B.I. Brounshtein, J. Appl. Chem. USSR (1950) 23: 1327-1338], which does correctly account for particle surface curvature without significant extra mathematical complication. Otherwise, it is possible (and likely desirable) to move to more advanced descriptions of particle-fluid reactions to account for factors such as dimensional changes during reaction, and the possibility of rate controlling influences other than diffusion

    Editorial

    Get PDF

    670 nm light mitigates oxygen-induced degeneration in C57BL/6J mouse retina

    Get PDF
    BACKGROUND Irradiation with light wavelengths from the far red (FR) to the near infrared (NIR) spectrum (600 nm -1000 nm) has been shown to have beneficial effects in several disease models. In this study, we aim to examine whether 670 nm red light pretreatment can provide protection against hyperoxia-induced damage in the C57BL/6J mouse retina. Adult mice (90-110 days) were pretreated with 9 J/cm2 of 670 nm light once daily for 5 consecutive days prior to being placed in hyperoxic environment (75% oxygen). Control groups were exposed to hyperoxia, but received no 670 nm light pretreatment. Retinas were collected after 0, 3, 7, 10 or 14 days of hyperoxia exposure (n = 12/group) and prepared either for histological analysis, or RNA extraction and quantitative polymerase chain reaction (qPCR). Photoreceptor damage and loss were quantified by counting photoreceptors undergoing cell death and measuring photoreceptor layer thickness. Localization of acrolein, and cytochrome c oxidase subunit Va (Cox Va) were identified through immunohistochemistry. Expression of heme oxygenase-1 (Hmox-1), complement component 3 (C3) and fibroblast growth factor 2 (Fgf-2) genes were quantified using qPCR. RESULTS The hyperoxia-induced photoreceptor loss was accompanied by reduction of metabolic marker, Cox Va, and increased expression of oxidative stress indicator, acrolein and Hmox-1. Pretreatment with 670 nm red light reduced expression of markers of oxidative stress and C3, and slowed, but did not prevent, photoreceptor loss over the time course of hyperoxia exposure. CONCLUSION The damaging effects of hyperoxia on photoreceptors were ameliorated following pretreatment with 670 nm light in hyperoxic mouse retinas. These results suggest that pretreatment with 670 nm light may provide stability to photoreceptors in conditions of oxidative stress.This work was supported by the Australian Research Council Centre of Excellence in Vision Science

    Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    Get PDF
    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behavior of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (WPC and BFS) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterization of the steel at the end of a 9-month exposure period, whereas the steel embedded in WPC mortars was significantly damaged under the same conditions

    Alkali-activated materials

    Get PDF
    © 2017 Elsevier Ltd.This paper, which forms part of the UNEP White Papers series on Eco-Efficient Cements, provides a brief discussion of the class of cementing materials known as 'alkali-activated binders', which are identified to have potential for utilization as a key component of a sustainable future global construction materials industry. These cements are not expected to offer a like-for-like replacement of Portland cement across its full range of applications, for reasons related to supply chain limitations, practical challenges in some modes of application, and the need for careful control of formulation and curing. However, when produced using locally-available raw materials, with well-formulated mix designs (including in particular consideration of the environmental footprint of the alkaline activator) and production under adequate levels of quality control, alkali-activated binders are potentially an important and cost-effective component of the future toolkit of sustainable construction materials

    Chemical characterisation of metakaolin and fly ash based geopolymers during exposure to solvents used in carbon capture

    Get PDF
    This paper presents an investigation into the chemical resistance of blended alkali activated aluminosilicate materials, specifically under exposure to two solvents used in post-combustion carbon capture, monoethanolamine (MEA) and potassium carbonate, as well as during immersion in distilled water. Geopolymers are formulated based on metakaolin and aon fly ash as aluminosilicate precursors, with the addition of ground granulated blast furnace slag (GGBFS) as a source of Ca. The samples are subjected to mineralogical and chemical characterisation in this paper, with data obtained through leaching analysis and X-ray diffraction, supported by compressive strength data. Exposure to solvents generally results in significant alteration of the geopolymer microstructure. The zeolitic phases formed in undamaged metakaolin-based binders are reduced to undetectable levels after 28 days of solvent exposure, although the hydrosodalite formed in the fly ash binders does persist. Leaching analysis indicates that resistance to structural damage in MEA is quite high, due to the low solubility of Na and hydroxides upon immersion. KCO solutions are aggressive towards geopolymers via alteration of the binder structure and dissolution of network-forming species (Si and Al), leading to the loss of binder strength. This is most marked in the fly ash/GGBFS formulations. Despite the low to intermediate level of Ca present in these geopolymer binders, significant formation of Ca-containing carbonate phases occurs upon exposure to KCO. The limited curing duration of the specimens tested here is certainly contributing to the degradation taking place under KCO exposure, whereas the low water activity in the MEA solutions used means that bond hydrolysis in the aluminosilicate geopolymer framework is restricted, and the materials perform much better than in a more water-rich environment. © 2014 Elsevier Ltd

    Cost-efficient one-part alkali-activated mortars with low global warming potential for floor heating systems applications

    Get PDF
    Increasing building energy efficiency is one the most cost-effective ways to reduce emissions. The use of thermal insulation materials mitigates heat loss in buildings, therefore minimising heat energy needs. In recent years, several papers were published on the subject of foam alkali-activated cements with enhanced thermal conductivity. However, on those papers cost analysis was strangely avoided. This paper presents experimental results on one-part alkali-activated cements. It also includes global warming potential assessment and cost analysis. Foam one-part alkali-activated cements cost simulations considering two carbon dioxide social costs scenarios are also included. The results show that one-part alkali-activated cements mixtures based on 26%OPC + 58.3%FA + 8%CS + 7.7%CH and 3.5% hydrogen peroxide constitute a promising cost-efficient (67 euro/m3), thermal insulation solution for floor heating systems. This mixture presents a low global warming potential of 443 KgCO2eq/m3. The results confirm that in both carbon dioxide social cost scenarios the mixture 26 OPC + 58.3 FA + 8 CS + 7.7 CH with 3.5% hydrogen peroxide foaming agent is still the most cost efficient

    Water content modifies the structural development of sodium metasilicate-activated slag binders

    Get PDF
    The effect of modifying the water content of an alkali - activated slag binder was assessed, in terms of the kinetics of reaction and the structural development of the material. There is not a s ystematic correlation between the water content of the mix and the rate of reaction, indicating that there is an optimal value that favours dissolution of the slag and precipitation of reaction products. A h igher water content reduce d the crystallinity and density of the reaction products, especially at advanced age. Small changes in the water content can have a significant impact on the compressive strength development of alkali - silicate activated slag mortars, suggesting that when producing materials base d on alkali - activated binders , it is essential to carefully control the water content

    Chemokine-mediated inflammation in the degenerating retina is coordinated by Müller cells, activated microglia, and retinal pigment epithelium

    Get PDF
    BACKGROUND Monocyte infiltration is involved in the pathogenesis of many retinal degenerative conditions. This process traditionally depends on local expression of chemokines, though the roles of many of these in the degenerating retina are unclear. Here, we investigate expression and in situ localization of the broad chemokine response in a light-induced model of retinal degeneration. METHODS Sprague-Dawley (SD) rats were exposed to 1,000 lux light damage (LD) for up to 24 hrs. At time points during (1 to 24 hrs) and following (3 and 7 days) exposure, animals were euthanized and retinas processed. Microarray analysis assessed differential expression of chemokines. Some genes were further investigated using polymerase chain reaction (PCR) and in situ hybridization and contrasted with photoreceptor apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Recruitment of retinal CD45 (+) leukocytes was determined via fluorescence activated cell sorting (FACS), and expression of chemokine receptors determined using PCR. RESULTS Exposure to 24 hrs of LD resulted in differential expression of chemokines including Ccl3, Ccl4, Ccl7, Cxcl1, and Cxcl10. Their upregulation correlated strongly with peak photoreceptor death, at 24 hrs exposure. In situ hybridization revealed that the modulated chemokines were expressed by a combination of Müller cells, activated microglia, and retinal pigment epithelium (RPE). This preceded large increases in the number of CD45(+) cells at 3- and 7-days post exposure, which expressed a corresponding repertoire of chemokine receptors. CONCLUSIONS Our data indicate that retinal degeneration induces upregulation of a broad chemokine response whose expression is coordinated by Müller cells, microglia, and RPE. The findings inform our understanding of the processes govern the trafficking of leukocytes, which are contributors in the pathology of retinal degenerations

    Comparison of calorimetric methods for the assessment of slag cement hydration

    Get PDF
    This study aims to contribute to future-proofing the supply of cement powders for the UK’s nuclear waste cementation program, by enabling rapid and reliable assessment of heat evolution from candidate grout formulations. Isothermal conduction calorimetry and semi-adiabatic calorimetry experiments were carried out at room temperature, to monitor the heat of hydration of blended blast furnace slag (BFS)-Portland cement formulations of relevance for wasteform grout applications. By changing the particle size distribution of the BFS, the physical and chemical properties of the cement grout are altered, and this can be monitored and understood through comparison between the two calorimetry methods
    corecore