2,689 research outputs found
Signatures of Classical Periodic Orbits on a Smooth Quantum System
Gutzwiller's trace formula and Bogomolny's formula are applied to a
non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic
oscillator. These semiclassical theories reproduce well the exact quantal
results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb
Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction
For large, real-world inductive learning problems, the number of training
examples often must be limited due to the costs associated with procuring,
preparing, and storing the training examples and/or the computational costs
associated with learning from them. In such circumstances, one question of
practical importance is: if only n training examples can be selected, in what
proportion should the classes be represented? In this article we help to answer
this question by analyzing, for a fixed training-set size, the relationship
between the class distribution of the training data and the performance of
classification trees induced from these data. We study twenty-six data sets
and, for each, determine the best class distribution for learning. The
naturally occurring class distribution is shown to generally perform well when
classifier performance is evaluated using undifferentiated error rate (0/1
loss). However, when the area under the ROC curve is used to evaluate
classifier performance, a balanced distribution is shown to perform well. Since
neither of these choices for class distribution always generates the
best-performing classifier, we introduce a budget-sensitive progressive
sampling algorithm for selecting training examples based on the class
associated with each example. An empirical analysis of this algorithm shows
that the class distribution of the resulting training set yields classifiers
with good (nearly-optimal) classification performance
Collective action problems in the contracting of public services: Evidence from the UK’s Ministry of Justice
In this paper, we examine collective action problems in the UK government in the process of contracting public services to the private sector. In particular, we examine the Ministry of Justice (MoJ) and its evolution in contract monitoring as part of a larger effort of the government to join up departments in contract management. By analyzing MoJ’s management of the electronic tagging contract with G4S and Serco, we show that a lack of coordination within the department and with other departments was a major reason for the overbilling by the two companies. Recent efforts to join up contract management efforts throughout government show promise in rectifying these contracting issues
A simple derivation of Kepler's laws without solving differential equations
Proceeding like Newton with a discrete time approach of motion and a
geometrical representation of velocity and acceleration, we obtain Kepler's
laws without solving differential equations. The difficult part of Newton's
work, when it calls for non trivial properties of ellipses, is avoided by the
introduction of polar coordinates. Then a simple reconsideration of Newton's
figure naturally leads to en explicit expression of the velocity and to the
equation of the trajectory. This derivation, which can be fully apprehended by
beginners at university (or even before) can be considered as a first
application of mechanical concepts to a physical problem of great historical
and pedagogical interest
Axial instability of rotating relativistic stars
Perturbations of rotating relativistic stars can be classified by their
behavior under parity. For axial perturbations (r-modes), initial data with
negative canonical energy is found with angular dependence for all
values of and for arbitrarily slow rotation. This implies instability
(or marginal stability) of such perturbations for rotating perfect fluids. This
low -instability is strikingly different from the instability to polar
perturbations, which sets in first for large values of . The timescale for
the axial instability appears, for small angular velocity , to be
proportional to a high power of . As in the case of polar modes,
viscosity will again presumably enforce stability except for hot, rapidly
rotating neutron stars. This work complements Andersson's numerical
investigation of axial modes in slowly rotating stars.Comment: Latex, 18 pages. Equations 84 and 85 are corrected. Discussion of
timescales is corrected and update
Recherches immunologiques sur la dermatophilose cutanée bovine. II. Essais d'immunisation du zébu contre la dermatophilose naturelle
Un vaccin vivant adjuvé (culture microbienne concentrée, additionnée d'huile minérale) a conféré une protection non négligeable contre la dermatophilose naturelle. Un autre vaccin vivant (simple culture concentrée), inoculé par voie intradermique, a protégé tous les bovins d'expérienc
Asymptotic and measured large frequency separations
With the space-borne missions CoRoT and Kepler, a large amount of
asteroseismic data is now available. So-called global oscillation parameters
are inferred to characterize the large sets of stars, to perform ensemble
asteroseismology, and to derive scaling relations. The mean large separation is
such a key parameter. It is therefore crucial to measure it with the highest
accuracy. As the conditions of measurement of the large separation do not
coincide with its theoretical definition, we revisit the asymptotic expressions
used for analysing the observed oscillation spectra. Then, we examine the
consequence of the difference between the observed and asymptotic values of the
mean large separation. The analysis is focused on radial modes. We use series
of radial-mode frequencies to compare the asymptotic and observational values
of the large separation. We propose a simple formulation to correct the
observed value of the large separation and then derive its asymptotic
counterpart. We prove that, apart from glitches due to stellar structure
discontinuities, the asymptotic expansion is valid from main-sequence stars to
red giants. Our model shows that the asymptotic offset is close to 1/4, as in
the theoretical development. High-quality solar-like oscillation spectra
derived from precise photometric measurements are definitely better described
with the second-order asymptotic expansion. The second-order term is
responsible for the curvature observed in the \'echelle diagrams used for
analysing the oscillation spectra and this curvature is responsible for the
difference between the observed and asymptotic values of the large separation.
Taking it into account yields a revision of the scaling relations providing
more accurate asteroseismic estimates of the stellar mass and radius.Comment: accepted in A&
- …
