2,689 research outputs found

    Excavating from the Inside: Race, Gender, and Peremptory Challenges

    Get PDF

    Signatures of Classical Periodic Orbits on a Smooth Quantum System

    Full text link
    Gutzwiller's trace formula and Bogomolny's formula are applied to a non--specific, non--scalable Hamiltonian system, a two--dimensional anharmonic oscillator. These semiclassical theories reproduce well the exact quantal results over a large spatial and energy range.Comment: 12 pages, uuencoded postscript file (1526 kb

    Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction

    Full text link
    For large, real-world inductive learning problems, the number of training examples often must be limited due to the costs associated with procuring, preparing, and storing the training examples and/or the computational costs associated with learning from them. In such circumstances, one question of practical importance is: if only n training examples can be selected, in what proportion should the classes be represented? In this article we help to answer this question by analyzing, for a fixed training-set size, the relationship between the class distribution of the training data and the performance of classification trees induced from these data. We study twenty-six data sets and, for each, determine the best class distribution for learning. The naturally occurring class distribution is shown to generally perform well when classifier performance is evaluated using undifferentiated error rate (0/1 loss). However, when the area under the ROC curve is used to evaluate classifier performance, a balanced distribution is shown to perform well. Since neither of these choices for class distribution always generates the best-performing classifier, we introduce a budget-sensitive progressive sampling algorithm for selecting training examples based on the class associated with each example. An empirical analysis of this algorithm shows that the class distribution of the resulting training set yields classifiers with good (nearly-optimal) classification performance

    Collective action problems in the contracting of public services: Evidence from the UK’s Ministry of Justice

    Get PDF
    In this paper, we examine collective action problems in the UK government in the process of contracting public services to the private sector. In particular, we examine the Ministry of Justice (MoJ) and its evolution in contract monitoring as part of a larger effort of the government to join up departments in contract management. By analyzing MoJ’s management of the electronic tagging contract with G4S and Serco, we show that a lack of coordination within the department and with other departments was a major reason for the overbilling by the two companies. Recent efforts to join up contract management efforts throughout government show promise in rectifying these contracting issues

    A simple derivation of Kepler's laws without solving differential equations

    Full text link
    Proceeding like Newton with a discrete time approach of motion and a geometrical representation of velocity and acceleration, we obtain Kepler's laws without solving differential equations. The difficult part of Newton's work, when it calls for non trivial properties of ellipses, is avoided by the introduction of polar coordinates. Then a simple reconsideration of Newton's figure naturally leads to en explicit expression of the velocity and to the equation of the trajectory. This derivation, which can be fully apprehended by beginners at university (or even before) can be considered as a first application of mechanical concepts to a physical problem of great historical and pedagogical interest

    Axial instability of rotating relativistic stars

    Get PDF
    Perturbations of rotating relativistic stars can be classified by their behavior under parity. For axial perturbations (r-modes), initial data with negative canonical energy is found with angular dependence eimϕe^{im\phi} for all values of m2m\geq 2 and for arbitrarily slow rotation. This implies instability (or marginal stability) of such perturbations for rotating perfect fluids. This low mm-instability is strikingly different from the instability to polar perturbations, which sets in first for large values of mm. The timescale for the axial instability appears, for small angular velocity Ω\Omega, to be proportional to a high power of Ω\Omega. As in the case of polar modes, viscosity will again presumably enforce stability except for hot, rapidly rotating neutron stars. This work complements Andersson's numerical investigation of axial modes in slowly rotating stars.Comment: Latex, 18 pages. Equations 84 and 85 are corrected. Discussion of timescales is corrected and update

    Recherches immunologiques sur la dermatophilose cutanée bovine. II. Essais d'immunisation du zébu contre la dermatophilose naturelle

    Get PDF
    Un vaccin vivant adjuvé (culture microbienne concentrée, additionnée d'huile minérale) a conféré une protection non négligeable contre la dermatophilose naturelle. Un autre vaccin vivant (simple culture concentrée), inoculé par voie intradermique, a protégé tous les bovins d'expérienc

    Asymptotic and measured large frequency separations

    Full text link
    With the space-borne missions CoRoT and Kepler, a large amount of asteroseismic data is now available. So-called global oscillation parameters are inferred to characterize the large sets of stars, to perform ensemble asteroseismology, and to derive scaling relations. The mean large separation is such a key parameter. It is therefore crucial to measure it with the highest accuracy. As the conditions of measurement of the large separation do not coincide with its theoretical definition, we revisit the asymptotic expressions used for analysing the observed oscillation spectra. Then, we examine the consequence of the difference between the observed and asymptotic values of the mean large separation. The analysis is focused on radial modes. We use series of radial-mode frequencies to compare the asymptotic and observational values of the large separation. We propose a simple formulation to correct the observed value of the large separation and then derive its asymptotic counterpart. We prove that, apart from glitches due to stellar structure discontinuities, the asymptotic expansion is valid from main-sequence stars to red giants. Our model shows that the asymptotic offset is close to 1/4, as in the theoretical development. High-quality solar-like oscillation spectra derived from precise photometric measurements are definitely better described with the second-order asymptotic expansion. The second-order term is responsible for the curvature observed in the \'echelle diagrams used for analysing the oscillation spectra and this curvature is responsible for the difference between the observed and asymptotic values of the large separation. Taking it into account yields a revision of the scaling relations providing more accurate asteroseismic estimates of the stellar mass and radius.Comment: accepted in A&
    corecore