184 research outputs found
Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications
One of the most attractive routes for the production of hydrogen or syngas for use in fuel cell applications is the reforming and partial oxidation of hydrocarbons. The use of hydrocarbons in high temperature fuel cells is achieved through either external or internal reforming. Reforming and partial oxidation catalysis to convert hydrocarbons to hydrogen rich syngas plays an important role in fuel processing technology. The current research in the area of reforming and partial oxidation of methane, methanol and ethanol includes catalysts for reforming and oxidation, methods of catalyst synthesis, and the effective utilization of fuel for both external and internal reforming processes. In this paper the recent progress in these areas of research is reviewed along with the reforming of liquid hydrocarbons, from this an overview of the current best performing catalysts for the reforming and partial oxidizing of hydrocarbons for hydrogen production is summarized
Catalytic decomposition of methane into hydrogen and carbon nanotubes over mesostructured silica nanoparticle-supported nickel catalysts
Hydrogen is an alternative source of renewable energy that can be produced by methane decomposition without any COx formation. In this work, an impregnation method was used to prepare a set of Ni-based catalysts (5% to 50%) supported on mesostructured silica nanoparticles (MSNs) for its application in methane decomposition. The use of MSN as an effective support for nickel in methane decomposition was reported here for the first time. The physical, chemical and structural properties of the catalysts was studied and the results indicated that NiO was the active species in the fresh catalyst that were effectively distributed on the mesoporous surface of MSN. The reduction temperature of Ni/MSN catalysts were shifted to low temperatures with increased loading of nickel. The hydrogen yield increased with the increment of Ni amount in the catalysts. The catalytic activity of the 50% Ni/MSN catalyst showed that this catalyst was highly efficient and stable compared with other catalysts. The catalyst showed the highest hydrogen yield of 68% and remained more or less the same during 360 min of reaction. Approximately 62% of hydrogen yield was observed at the end of reaction. Further analysis on the spent catalysts confirmed that carbon nanotubes was formed over Ni/MSN catalyst with high graphitization degree
The influence of hierarchical zeolite composition and pore structure on behavior of cobalt-based Fischer–Tropsch synthesis catalysts
Pseudocapacitance Properties of Co3O4 Nanoparticles Synthesized Using a Modified Sol-Gel Method
The pore network and the adsorption characteristics of mesoporous silica aerogel: adsorption kinetics on a timescale of seconds
The role of hydrogen and fuel cells in the global energy system
Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarb onisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, h eat, industry, transport and energy storage in a low - carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain nic hes such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium - term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world
ChemInform Abstract: Catalytic Aspects of Ceria-Zrconia Solid Solution: Part 1. An Update in the Synthesis, Properties and Chemical Reactions of Ceria Zirconia Solid Solution
Hydrothermal synthesis of mesostructured ZnO micropyramids with enhanced photocatalytic performance
Sol-gel synthesis, characterisation, and photocatalytic activity of porous spinel Co3O4 nanosheets
AbstractMesoporous spinel Co3O4 nanosheets were synthesised via a simple sol-gel route using the Pluronic P123 triblock copolymer as the stabilising agent. Their structural, morphological, and textural properties were characterised. FTIR spectrum revealed the formation of cobalt oxide without any surface adsorbed impurities. Face centered cubic phase of spinel Co3O4 with the mean crystalline size of 26 nm was assigned by the X-ray diffraction analysis without the formation of other phases. Porous nanosheets and cave-like morphologies were identified from the scanning electron microscopy (SEM) images. Highly agglomerated more or less spherical particles with well separated lattice fringes, representing the oriented growth of nanocrystals, were noticed on the transmission electron microscopy photographs. Surface area analysis revealed that the spinel has high surface area of about 25 m2 g−1 with monomodal mesoporosity. The average pore size distribution was found to be about 15.8 nm. The as-prepared spinel photocatalyst showed a mild photocatalytic activity in the degradation of methylene blue (2.5 mg L−1) under UV light irradiation with air as the oxidising agent. Photocatalytic activity of the as-prepared reusable Co3O4 was found to be higher than that of the commercial spinel powder.</jats:p
- …
