242 research outputs found
On string integrability. A journey through the two-dimensional hidden symmetries in the AdS/CFT dualities
One of the main topics in the modern String Theory are the AdS/CFT dualities.
Proving such conjectures is extremely difficult since the gauge and string
theory perturbative regimes do not overlap. In this perspective, the discovery
of infinitely many conserved charges, i.e. the integrability, in the planar
AdS/CFT has allowed us to reach immense progresses in understanding and
confirming the duality. We review the fundamental concepts and properties of
integrability in two-dimensional sigma-models and in the AdS/CFT context. The
first part is focused on the AdS_5/CFT_4 duality, especially the classical and
quantum integrability of the type IIB superstring on AdS_5 x S^5 are discussed
in both pure spinor and Green-Schwarz formulations. The second part is
dedicated to the AdS_4/CFT_3 duality with particular attention to the type IIA
superstring on AdS_4 x CP^3 and its integrability. This review is based on a
shortened and revised version of the author's PhD thesis, discussed at Uppsala
University in September 2009.Comment: 116 pages, 11 figures, to be published in Advances in High Energy
Physics, Special Issue on ''Gauge/String Duality'
Magnetic oscillations in a holographic liquid
We present a holographic perspective on magnetic oscillations in strongly
correlated electron systems via a fluid of charged spin 1/2 particles outside a
black brane in an asymptotically anti-de-Sitter spacetime. The resulting
back-reaction on the spacetime geometry and bulk gauge field gives rise to
magnetic oscillations in the dual field theory, which can be directly studied
without introducing probe fermions, and which differ from those predicted by
Fermi liquid theory.Comment: 8 pages, 4 figures; v2: matches published versio
Operator Product Expansion for Pure Spinor Superstring on AdS(5)*S(5)
The tree-level operator product expansion coefficients of the matter currents
are calculated in the pure spinor formalism for type IIB superstring in the
AdS(5)*S(5) background.Comment: 18 pages, no figure, corrected typos and added acknowledgement
Glycolaldehyde, methyl formate and acetic acid adsorption and thermal desorption from interstellar ices
We have undertaken a detailed investigation of the adsorption, desorption and thermal processing of the astrobiologically significant isomers glycolaldehyde, acetic acid and methyl formate. Here, we present the results of laboratory infrared and temperature programmed desorption (TPD) studies of the three isomers from model interstellar ices adsorbed on a carbonaceous dust grain analogue surface. Laboratory infrared data show that the isomers can be clearly distinguished on the basis of their infrared spectra, which has implications for observations of interstellar ice spectra. Laboratory TPD data also show that the three isomers can be distinguished on the basis of their thermal desorption behaviour. In particular, TPD data show that the isomers cannot be treated the same way in astrophysical models of desorption. The desorption of glycolaldehyde and acetic acid from water-dominated ices is very similar, with desorption being mainly dictated by water ice. However, methyl formate also desorbs from the surface of the ice, as a pure desorption feature, and therefore desorbs at a lower temperature than the other two isomers. This is more clearly indicated by models of the desorption on astrophysical time-scales corresponding to the heating rate of 25 and 5 M⊙ stars. For a 25 M⊙ star, our model shows that a proportion of the methyl formate can be found in the gas phase at earlier times compared to glycolaldehyde and acetic acid. This has implications for the observation and detection of these molecules, and potentially explains why methyl formate has been observed in a wider range of astrophysical environments than the other two isomers
Trapping and desorption of complex organic molecules in water at 20 K
The formation, chemical and thermal processing of complex organic molecules (COMs) is currently a topic of much interest in interstellar chemistry. The isomers glycolaldehyde, methyl formate and acetic acid are particularly important because of their role as pre-biotic species. It is becoming increasingly clear that many COMs are formed within interstellar ices which are dominated by water. Hence the interaction of these species with water ice is crucially important in dictating their behaviour. Here we present the first detailed comparative study of the adsorption and thermal processing of glycolaldehyde, methyl formate and acetic acid adsorbed on and in water ices at astrophysically relevant temperatures (20 K). We show that the functional group of the isomer dictates the strength of interaction with water ice, and hence the resulting desorption and trapping behaviour. Furthermore, the strength of this interaction directly affects the crystallization of water, which in turn affects the desorption behaviour. Our detailed coverage and composition dependent data allow us to categorize the desorption behaviour of the three isomers on the basis of the strength of intermolecular and intramolecular interactions, as well as the natural sublimation temperature of the molecule. This categorization is extended to other C, H and O containing molecules in order to predict and describe the desorption behaviour of COMs from interstellar ices
Remarks on the geometrical properties of semiclassically quantized strings
We discuss some geometrical aspects of the semiclassical quantization of string solutions in type IIB Green–Schwarz action on ADS5xS5 We concentrate on quadratic fluctuations around classical configurations, expressing the relevant differential operators in terms of (intrinsic and extrinsic) invariants of the background geometry. The aim of our exercise is to present some compact expressions encoding the spectral properties of bosonic and fermionic fluctuations. The appearing of non-trivial structures on the relevant bundles and their role in concrete computations are also considered. We corroborate the presentation of general formulas by working out explicitly a couple of relevant examples, namely the spinning string and the latitude BPS Wilson loop
Use of National Forest Inventories to Downscale European Forest Diversity Spatial Information in Five Test Areas, Covering Different Geo-Physical and Geo-Botanical Conditions
The project ¿Use of National Forest Inventories to downscale European forest diversity spatial information in five test areas, covering different geo-physical and geo-botanical conditions¿, referred also as ¿forest downscaling¿ (JRC contract 382340 F1SC) covers one of the seven topics that have been studied in the frame of the Regulation (EC) 2152/2003 on the monitoring of forest and environmental interactions, the so-called "Forest Focus" Regulation.
This study was conducted by a European consortium coordinated by the Italian Academy of Forest Sciences (Italy) and included partners from the Swedish University of Agricultural Sciences, the Institute of Forest Ecosystem Research of the Czech Republic, the German Federal Research Centre for Forestry and Forest Products, and the Swiss Federal Institute for Forest, Snow and Landscape Research. The overall supervision of the project and the processing of forest spatial pattern were done by the Joint Research Centre.
This study addressed the link between field based forest biological diversity data and landscape-level forest pattern information. The former were made available from National Forest Inventories (NFIs) at plot level in five different countries; their harmonisation was implemented for the first time and benefited from outcomes of the COST Action-E43 on core biodiversity variables. For the latter, landscape level forest spatial pattern maps were automatically derived from available remote sensing based forest cover maps. The relation-ships between selected pattern and biodiversity variables available from the two different data sources were studied.
Seven case studies for a total area of about 100,000 km2 were selected in five European ecological regions: one site in Germany (Atlantic zone), one in Sweden (Boreal zone), two in Czech Republic (Continental zone), one in Switzerland (Alpine zone) and two in Italy (Mediterranean zone).JRC.DDG.H.7-Land management and natural hazard
Holographic metals at finite temperature
A holographic dual description of a 2+1 dimensional system of strongly
interacting fermions at low temperature and finite charge density is given in
terms of an electron cloud suspended over the horizon of a charged black hole
in asymptotically AdS spacetime. The electron star of Hartnoll and Tavanfar is
recovered in the limit of zero temperature, while at higher temperatures the
fraction of charge carried by the electron cloud is reduced and at a critical
temperature there is a second order phase transition to a configuration with
only a charged black hole. The geometric structure implies that finite
temperature transport coefficients, including the AC electrical conductivity,
only receive contributions from bulk fermions within a finite band in the
radial direction.Comment: LaTex 16 pages, 12 figures, v2: Added reference. Error in free energy
corrected. Phase transition to AdS-RN black brane is third order rather than
second order as was claimed previousl
On the formation of glycolaldehyde in dense molecular cores
Glycolaldehyde is a simple monosaccharide sugar linked to prebiotic chemistry. Recently, it was detected in a molecular core in the star-forming region G31.41+0.31 at a reasonably high abundance. We investigate the formation of glycolaldehyde at 10 K to determine whether it can form efficiently under typical dense core conditions. Using an astrochemical model, we test five different reaction mechanisms that have been proposed in the astrophysical literature, finding that a gas-phase formation route is unlikely. Of the grain-surface formation routes, only two are efficient enough at very low temperatures to produce sufficient glycolaldehyde to match the observational estimates, with the mechanism culminating in CH3OH + HCO being favored. However, when we consider the feasibility of these mechanisms from a reaction chemistry perspective, the second grain-surface route looks more promising, H3CO + HCO
- …
