224 research outputs found
Hidden paleosols on a high-elevation Alpine plateau (NW Italy): Evidence for Lateglacial Nunatak?
Alpine soils can provide valuable paleo-environmental information, representing a powerful tool for paleoclimate reconstruction. However, since Pleistocene glaciations and erosion-related processes erased most of the pre-existing landforms and soils, reconstructing soil and landscape development in high-mountain areas can be a difficult task. In particular, a relevant lack of information exists on the transition between the Last Glacial Maximum (LGM ~21,000 yr BP) and the Holocene (~11,700 yr BP), with this climatic shift that plays a crucial role for environmental thresholds identification. The present study aims at reconstructing the history and origin of hidden paleosols inside periglacial blockstreams and blockfields on a high-elevation Alpine plateau (Stolenberg Plateau) above 3000 m a.s.l., in the Northwestern Italian Alps. The results indicate that these soils recorded the main warming climatic phases occurred from the end of the LGM until the Late Holocene ~4000 yr BP. Our reconstructions, together with the high carbon stocks of these paleosols, suggest that during warming phases the environmental conditions on the Plateau were suitable for plant life and pedogenesis, already since 22,000–21,000 yr BP. These paleosols reasonably evidence the existence of a Lateglacial Nunatak representing, to our knowledge, one of the first documented relict non-glacial surfaces in the high-elevated European Alps. Thus, the Stolenberg Plateau provides important information about past climate and surface processes since the end of LGM, suggesting new perspectives on the long-term landscape evolution of the high European Alps
Modelling the associations between fat-free mass, resting metabolic rate and energy intake in the context of total energy balance
© 2016 Macmillan Publishers Limited.The relationship between body composition, energy expenditure and ad libitum energy intake (EI) has rarely been examined under conditions that allow any interplay between these variables to be disclosed.Objective:The present study examined the relationships between body composition, energy expenditure and EI under controlled laboratory conditions in which the energy density and macronutrient content of the diet varied freely as a function of food choice.Methods:Fifty-nine subjects (30 men: mean body mass index=26.7±4.0 kg m-2; 29 women: mean body mass index=25.4±3.5 kg m-2) completed a 14-day stay in a residential feeding behaviour suite. During days 1 and 2, subjects consumed a fixed diet designed to maintain energy balance. On days 3-14, food intake was covertly measured in subjects who had ad libitum access to a wide variety of foods typical of their normal diets. Resting metabolic rate (RMR; respiratory exchange), total daily energy expenditure (doubly labelled water) and body composition (total body water estimated from deuterium dilution) were measured on days 3-14.Results:Hierarchical multiple regression indicated that after controlling for age and sex, both fat-free mass (FFM; P<0.001) and RMR (P<0.001) predicted daily EI. However, a mediation model using path analysis indicated that the effect of FFM (and fat mass) on EI was fully mediated by RMR (P<0.001).Conclusions:These data indicate that RMR is a strong determinant of EI under controlled laboratory conditions where food choice is allowed to freely vary and subjects are close to energy balance. Therefore, the conventional adipocentric model of appetite control should be revised to reflect the influence of RMR
Nitrogen sequestration under long-term paddy management in soils developed on contrasting parent material
Black carbon and black nitrogen storage under long-term paddy and non-paddy management in major reference soil groups
Chemical, physical and microbiological characterisation of water in an alpine permafrost area (Istituto Mosso LTER site, NW Italian Alps)
Early season N<sub>2</sub>O emissions under variable water management in rice systems: source-partitioning emissions using isotope ratios along a depth profile
Soil moisture strongly affects the balance between nitrification, denitrification
and N2O reduction and therefore the nitrogen (N) efficiency and N
losses in agricultural systems. In rice systems, there is a need to improve
alternative water management practices, which are designed to save water and
reduce methane emissions but may increase N2O and decrease nitrogen
use efficiency. In a field experiment with three water management treatments,
we measured N2O
isotope ratios of emitted and pore air N2O
(δ15N, δ18O and site preference, SP) over the
course of 6 weeks in the early rice growing season. Isotope ratio
measurements were coupled with simultaneous measurements of pore water
NO3-, NH4+, dissolved organic carbon (DOC), water-filled pore space (WFPS) and soil redox potential (Eh) at three soil depths.
We then used the relationship between SP × δ18O-N2O and
SP × δ15N-N2O in simple two end-member
mixing models to evaluate the contribution of nitrification, denitrification
and fungal denitrification to total N2O emissions and to estimate
N2O reduction rates. N2O emissions were higher in a
dry-seeded + alternate wetting and drying (DS-AWD) treatment relative to
water-seeded + alternate wetting and drying (WS-AWD) and
water-seeded + conventional flooding (WS-FLD) treatments. In the DS-AWD
treatment the highest emissions were associated with a high contribution from
denitrification and a decrease in N2O reduction, while in the WS
treatments, the highest emissions occurred when contributions from
denitrification/nitrifier denitrification and nitrification/fungal
denitrification were more equal. Modeled denitrification rates appeared to be
tightly linked to nitrification and NO3- availability in all
treatments; thus, water management affected the rate of denitrification and
N2O reduction by controlling the substrate availability for each
process (NO3- and N2O), likely through changes in
mineralization and nitrification rates. Our model estimates of mean
N2O reduction rates match well those observed in 15N
fertilizer labeling studies in rice systems and show promise for the use of
dual isotope ratio mixing models to estimate N2 losses.</p
Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the ankle region. A descriptive interventional study
BACKGROUND: The ankle region is frequently involved in juvenile idiopathic arthritis (JIA) but difficult to examine clinically due to its anatomical complexity. The aim of the study was to evaluate the role of ultrasonography (US) of the ankle and midfoot (ankle region) in JIA. Doppler-US detected synovial hypertrophy, effusion and hyperemia and US was used for guidance of steroid injection and to assess treatment efficacy. METHODS: Forty swollen ankles regions were studied in 30 patients (median age 6.5 years, range 1-16 years) with JIA. All patients were assessed clinically, by US (synovial hypertrophy, effusion) and by color Doppler (synovial hyperemia) before and 4 weeks after US-guided steroid injection. RESULTS: US detected 121 compartments with active disease (joints, tendon sheaths and 1 ganglion cyst). Multiple compartments were involved in 80% of the ankle regions. The talo-crural joint, posterior subtalar joint, midfoot joints and tendon sheaths were affected in 78%, 65%, 30% and 55% respectively. Fifty active tendon sheaths were detected, and multiple tendons were involved in 12 of the ankles. US-guidance allowed accurate placement of the corticosteroid in all 85 injected compartments, with a low rate of subcutaneous atrophy (4,7%). Normalization or regression of synovial hypertrophy was obtained in 89%, and normalization of synovial hyperemia in 89%. Clinical resolution of active arthritis was noted in 72% of the ankles. CONCLUSIONS: US enabled exact anatomical location of synovial inflammation in the ankle region of JIA patients. The talo-crural joint was not always involved. Disease was frequently found in compartments difficult to evaluate clinically. US enabled exact guidance of steroid injections, gave a low rate of subcutaneous atrophy and was proved valuable for follow-up examinations. Normalization or regression of synovial hypertrophy and hyperemia was achieved in most cases, which supports the notion that US is an important tool in the management of ankle involvement in JIA
- …
