23 research outputs found

    PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects

    Get PDF
    Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January – April and August – December inclusive, and typically has allocations of 10 nights per month. Aims. We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods. PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13–18 Å between 3345−9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935−2.53 μm and resolutions 23−33 Å) and imaging with broadband JHKs filters. Results. This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012–2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ~15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions. Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Low-luminosity Type II supernovae - III. SN 2018hwm, a faint event with an unusually long plateau

    Get PDF
    In this work, we present photometric and spectroscopic data of the low-luminosity (LL) Type IIP supernova (SN) 2018hwm. The object shows a faint (Mr = -15 mag) and very long (~ 130 d) plateau, followed by a 2.7 mag drop in the r band to the radioactive tail. The first spectrum shows a blue continuum with narrow Balmer lines, while during the plateau the spectra show numerous metal lines, all with strong and narrow P-Cygni profiles. The expansion velocities are low, in the 1000-1400 km s-1 range. The nebular spectrum, dominated by H α in emission, reveals weak emission from [O I] and [Ca II] doublets. The absolute light curve and spectra at different phases are similar to those of LL SNe IIP. We estimate that 0.002 M⊙ of 56Ni mass were ejected, through hydrodynamical simulations. The best fit of the model to the observed data is found for an extremely low explosion energy of 0.055 foe, a progenitor radius of 215 R⊙, and a final progenitor mass of 9-10 M⊙. Finally, we performed a modelling of the nebular spectrum, to establish the amount of oxygen and calcium ejected. We found a low M(16O)≈ 0.02M⊙, but a high M(40Ca) of 0.3 M⊙. The inferred low explosion energy, the low ejected 56Ni mass, and the progenitor parameters, along with peculiar features observed in the nebular spectrum, are consistent with both an electron-capture SN explosion of a superasymptotic giant branch star and with a low-energy, Ni-poor iron core-collapse SN from a 10-12 M⊙ red supergiant.</p

    Low-luminosity Type II supernovae - III. SN 2018hwm, a faint event with an unusually long plateau

    Get PDF
    In this work, we present photometric and spectroscopic data of the low-luminosity (LL) Type IIP supernova (SN) 2018hwm. The object shows a faint (Mr = -15 mag) and very long (∼130 d) plateau, followed by a 2.7 mag drop in the r band to the radioactive tail. The first spectrum shows a blue continuum with narrow Balmer lines, while during the plateau the spectra show numerous metal lines, all with strong and narrow P-Cygni profiles. The expansion velocities are low, in the 1000-1400 km s-1 range. The nebular spectrum, dominated by H α in emission, reveals weak emission from [O i] and [Ca ii] doublets. The absolute light curve and spectra at different phases are similar to those of LL SNe IIP. We estimate that 0.002 M of 56Ni mass were ejected, through hydrodynamical simulations. The best fit of the model to the observed data is found for an extremely low explosion energy of 0.055 foe, a progenitor radius of 215 R, and a final progenitor mass of 9-10 M. Finally, we performed a modelling of the nebular spectrum, to establish the amount of oxygen and calcium ejected. We found a low M(16O)0.02M\approx 0.02\, \mathrm{ M}_{\odot }, but a high M(40Ca) of 0.3 M. The inferred low explosion energy, the low ejected 56Ni mass, and the progenitor parameters, along with peculiar features observed in the nebular spectrum, are consistent with both an electron-capture SN explosion of a superasymptotic giant branch star and with a low-energy, Ni-poor iron core-collapse SN from a 10-12 M red supergiant

    SN 2009N: linking normal and subluminous Type II-P SNe

    Get PDF
    We present ultraviolet, optical, near-infrared photometry and spectroscopy of SN 2009N in NGC 4487. This object is a Type II-P supernova with spectra resembling those of subluminous II-P supernovae, while its bolometric luminosity is similar to that of the intermediate-luminosity SN 2008in. We created SYNOW models of the plateau phase spectra for line identification and to measure the expansion velocity. In the near-infrared spectra we find signs indicating possible weak interaction between the supernova ejecta and the pre-existing circumstellar material. These signs are also present in the previously unpublished near-infrared spectra of SN 2008in. The distance to SN 2009N is determined via the expanding photosphere method and the standard candle method as D = 21.6 +/- 1.1 Mpc. The produced nickel-mass is estimated to be similar to 0.020 +/- 0.004 M-circle dot. We infer the physical properties of the progenitor at the explosion through hydrodynamical modelling of the observables. We find the values ofthe total energy as similar to 0.48 x 10(51) erg, the ejected mass as similar to 11.5 M-circle dot, and the initial radius as similar to 287 R-circle dot.</p

    The Explosion Mechanism of Core-Collapse Supernovae and Its Observational Signatures

    Full text link
    The death of massive stars is shrouded in many mysteries. One of them is the mechanism that overturns the collapse of the degenerate iron core into an explosion, a process that determines the supernova explosion energy, properties of the surviving compact remnant, and the nucleosynthetic yields. The number of core-collapse supernova observations has been growing with an accelerating pace thanks to modern time-domain astronomical surveys and new tests of the explosion mechanism are becoming possible. We review predictions of parameterized supernova explosion models and compare them with explosion properties inferred from observed light curves, spectra, and neutron star masses.Comment: Reviews in Frontiers of Modern Astrophysics; From Space Debris to Cosmology, edited by Kab\'ath, Petr; Jones, David; Skarka, Marek. ISBN: 978-3-030-38509-5. Cham: Springer International Publishing, 2020, pp. 189-21

    Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors

    Get PDF
    We present new data for five underluminous Type II-plateau supernovae (SNe IIP), namely SN 1999gn, SN 2002gd, SN 2003Z, SN 2004eg and SN 2006ov. This new sample of low-luminosity SNe IIP (LL SNe IIP) is analysed together with similar objects studied in the past. All of them show a flat light-curve plateau lasting about 100 d, an underluminous late-time exponential tail, intrinsic colours that are unusually red, and spectra showing prominent and narrow P Cygni lines. A velocity of the ejected material below 10(3) km s(-1) is inferred from measurements at the end of the plateau. The Ni-56 masses ejected in the explosion are very small (&lt; 10(-2) M-circle dot). We investigate the correlations among Ni-56 mass, expansion velocity of the ejecta and absolute magnitude in the middle of the plateau, confirming the main findings of Hamuy, according to which events showing brighter plateau and larger expansion velocities are expected to produce more Ni-56. We propose that these faint objects represent the LL tail of a continuous distribution in parameters space of SNe IIP. The physical properties of the progenitors at the explosion are estimated through the hydrodynamical modelling of the observables for two representative events of this class, namely SN 2005cs and SN 2008in. We find that the majority of LL SNe IIP, and quite possibly all, originate in the core collapse of intermediate-mass stars, in the mass range 10-15 M-circle dot.</p

    Low luminosity Type II supernovae - IV. SN 2020cxd and SN 2021aai, at the edges of the sub-luminous supernovae class

    Get PDF
    Photometric and spectroscopic data for two Low Luminosity Type IIP Supernovae (LL SNe IIP) 2020cxd and 2021aai are presented. SN 2020cxd was discovered 2 d after explosion at an absolute magnitude of M-r = -14.02 +/- 0.21 mag, subsequently settling on a plateau which lasts for similar to 120 d. Through the luminosity of the late light curve tail, we infer a synthesized Ni-56 mass of (1.8 +/- 0.5) x 10(-3) M-circle dot. During the early evolutionary phases, optical spectra show a blue continuum (T > 8000 K) with broad Balmer lines displaying a P Cygni profile, while at later phases, Ca II, Fe II, Sc II, and Ba II lines dominate the spectra. Hydrodynamical modelling of the observables yields R similar or equal to 575 R-circle dot for the progenitor star, with M-ej = 7.5 M-circle dot and E similar or equal to 0.097 foe emitted during the explosion. This low-energy event originating from a low-mass progenitor star is compatible with both the explosion of a red supergiant (RSG) star and with an Electron Capture Supernova arising from a super asymptotic giant branch star. SN 2021aai reaches a maximum luminosity of M-r = -16.57 +/- 0.23 mag (correcting for A(V) = 1.92 mag), at the end of its remarkably long plateau (similar to 140 d). The estimated Ni-56 mass is (1.4 +/- 0.5) x 10(-2) M-circle dot. The expansion velocities are compatible with those of other LL SNe IIP (few 10(3) km s(-1)). The physical parameters obtained through hydrodynamical modelling are R similar or equal to 575 R-circle dot, M-ej = 15.5 M-circle dot, and E = 0.4 foe. SN 2021aai is therefore interpreted as the explosion of an RSG, with properties that bridge the class of LL SNe IIP with standard SN IIP events.</p

    Low luminosity Type II supernovae - IV. SN 2020cxd and SN 2021aai, at the edges of the sub-luminous supernovae class

    Get PDF
    Photometric and spectroscopic data for two Low Luminosity Type IIP Supernovae (LL SNe IIP) 2020cxd and 2021aai are presented. SN 2020cxd was discovered 2 d after explosion at an absolute magnitude of Mr = -14.02 ± 0.21 mag, subsequently settling on a plateau which lasts for ∼120 d. Through the luminosity of the late light curve tail, we infer a synthesized 56Ni mass of (1.8 ± 0.5) × 10-3 M⊙. During the early evolutionary phases, optical spectra show a blue continuum (T >8000 K) with broad Balmer lines displaying a P Cygni profile, while at later phases, Ca ii, Fe ii, Sc ii, and Ba ii lines dominate the spectra. Hydrodynamical modelling of the observables yields R ~ 575 R⊙ for the progenitor star, with Mej = 7.5 M⊙ and E ~ 0.097 foe emitted during the explosion. This low-energy event originating from a low-mass progenitor star is compatible with both the explosion of a red supergiant (RSG) star and with an Electron Capture Supernova arising from a super asymptotic giant branch star. SN 2021aai reaches a maximum luminosity of Mr = -16.57 ± 0.23 mag (correcting for AV = 1.92 mag), at the end of its remarkably long plateau (∼140 d). The estimated 56Ni mass is (1.4 ± 0.5) × 10-2 M⊙. The expansion velocities are compatible with those of other LL SNe IIP (few 103 km s-1). The physical parameters obtained through hydrodynamical modelling are R ~575 R⊙, Mej = 15.5 M⊙, and E = 0.4 foe. SN 2021aai is therefore interpreted as the explosion of an RSG, with properties that bridge the class of LL SNe IIP with standard SN IIP events

    The type IIP supernova 2012aw in m95: Hydrodynamical modeling of the photospheric phase from accurate spectrophotometric monitoring

    Get PDF
    We present an extensive optical and near-infrared photometric and spectroscopic campaign of the Type IIP supernova SN 2012aw. The data set densely covers the evolution of SN 2012aw shortly after the explosion through the end of the photospheric phase, with two additional photometric observations collected during the nebular phase, to fit the radioactive tail and estimate the Ni mass. Also included in our analysis is the previously published Swift UV data, therefore providing a complete view of the ultraviolet-optical- infrared evolution of the photospheric phase. On the basis of our data set, we estimate all the relevant physical parameters of SN 2012aw with our radiation-hydrodynamics code: envelope mass M ∼ 20 M , progenitor radius R ∼ 3 × 10 cm (∼430 R), explosion energy E ∼ 1.5 foe, and initial Ni mass ∼0.06 M. These mass and radius values are reasonably well supported by independent evolutionary models of the progenitor, and may suggest a progenitor mass higher than the observational limit of 16.5 ± 1.5 M of the Type IIP events. © 2014. The American Astronomical Society. All rights reserved.
    corecore