489 research outputs found
More than a feeling: A unified view of stress measurement for population science.
Stress can influence health throughout the lifespan, yet there is little agreement about what types and aspects of stress matter most for human health and disease. This is in part because "stress" is not a monolithic concept but rather, an emergent process that involves interactions between individual and environmental factors, historical and current events, allostatic states, and psychological and physiological reactivity. Many of these processes alone have been labeled as "stress." Stress science would be further advanced if researchers adopted a common conceptual model that incorporates epidemiological, affective, and psychophysiological perspectives, with more precise language for describing stress measures. We articulate an integrative working model, highlighting how stressor exposures across the life course influence habitual responding and stress reactivity, and how health behaviors interact with stress. We offer a Stress Typology articulating timescales for stress measurement - acute, event-based, daily, and chronic - and more precise language for dimensions of stress measurement
Chronic psychosocial and financial burden accelerates 5-year telomere shortening: findings from the Coronary Artery Risk Development in Young Adults Study.
Leukocyte telomere length, a marker of immune system function, is sensitive to exposures such as psychosocial stressors and health-maintaining behaviors. Past research has determined that stress experienced in adulthood is associated with shorter telomere length, but is limited to mostly cross-sectional reports. We test whether repeated reports of chronic psychosocial and financial burden is associated with telomere length change over a 5-year period (years 15 and 20) from 969 participants in the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a longitudinal, population-based cohort, ages 18-30 at time of recruitment in 1985. We further examine whether multisystem resiliency, comprised of social connections, health-maintaining behaviors, and psychological resources, mitigates the effects of repeated burden on telomere attrition over 5 years. Our results indicate that adults with high chronic burden do not show decreased telomere length over the 5-year period. However, these effects do vary by level of resiliency, as regression results revealed a significant interaction between chronic burden and multisystem resiliency. For individuals with high repeated chronic burden and low multisystem resiliency (1 SD below the mean), there was a significant 5-year shortening in telomere length, whereas no significant relationships between chronic burden and attrition were evident for those at moderate and higher levels of resiliency. These effects apply similarly across the three components of resiliency. Results imply that interventions should focus on establishing strong social connections, psychological resources, and health-maintaining behaviors when attempting to ameliorate stress-related decline in telomere length among at-risk individuals
The Impatient May Use Limited Optimism to Minimize Regret
Discounted-sum games provide a formal model for the study of reinforcement
learning, where the agent is enticed to get rewards early since later rewards
are discounted. When the agent interacts with the environment, she may regret
her actions, realizing that a previous choice was suboptimal given the behavior
of the environment. The main contribution of this paper is a PSPACE algorithm
for computing the minimum possible regret of a given game. To this end, several
results of independent interest are shown. (1) We identify a class of
regret-minimizing and admissible strategies that first assume that the
environment is collaborating, then assume it is adversarial---the precise
timing of the switch is key here. (2) Disregarding the computational cost of
numerical analysis, we provide an NP algorithm that checks that the regret
entailed by a given time-switching strategy exceeds a given value. (3) We show
that determining whether a strategy minimizes regret is decidable in PSPACE
Synchronization and Control in Intrinsic and Designed Computation: An Information-Theoretic Analysis of Competing Models of Stochastic Computation
We adapt tools from information theory to analyze how an observer comes to
synchronize with the hidden states of a finitary, stationary stochastic
process. We show that synchronization is determined by both the process's
internal organization and by an observer's model of it. We analyze these
components using the convergence of state-block and block-state entropies,
comparing them to the previously known convergence properties of the Shannon
block entropy. Along the way, we introduce a hierarchy of information
quantifiers as derivatives and integrals of these entropies, which parallels a
similar hierarchy introduced for block entropy. We also draw out the duality
between synchronization properties and a process's controllability. The tools
lead to a new classification of a process's alternative representations in
terms of minimality, synchronizability, and unifilarity.Comment: 25 pages, 13 figures, 1 tabl
A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow
In this paper we present a Semi-Lagrangian scheme for a regularized version
of the Hughes model for pedestrian flow. Hughes originally proposed a coupled
nonlinear PDE system describing the evolution of a large pedestrian group
trying to exit a domain as fast as possible. The original model corresponds to
a system of a conservation law for the pedestrian density and an Eikonal
equation to determine the weighted distance to the exit. We consider this model
in presence of small diffusion and discuss the numerical analysis of the
proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small
diffusion on the exit time with various numerical experiments
Decision Problems for Nash Equilibria in Stochastic Games
We analyse the computational complexity of finding Nash equilibria in
stochastic multiplayer games with -regular objectives. While the
existence of an equilibrium whose payoff falls into a certain interval may be
undecidable, we single out several decidable restrictions of the problem.
First, restricting the search space to stationary, or pure stationary,
equilibria results in problems that are typically contained in PSPACE and NP,
respectively. Second, we show that the existence of an equilibrium with a
binary payoff (i.e. an equilibrium where each player either wins or loses with
probability 1) is decidable. We also establish that the existence of a Nash
equilibrium with a certain binary payoff entails the existence of an
equilibrium with the same payoff in pure, finite-state strategies.Comment: 22 pages, revised versio
Probabilistic inference for determining options in reinforcement learning
Tasks that require many sequential decisions or complex solutions are hard to solve using conventional reinforcement learning algorithms. Based on the semi Markov decision process setting (SMDP) and the option framework, we propose a model which aims to alleviate these concerns. Instead of learning a single monolithic policy, the agent learns a set of simpler sub-policies as well as the initiation and termination probabilities for each of those sub-policies. While existing option learning algorithms frequently require manual specification of components such as the sub-policies, we present an algorithm which infers all relevant components of the option framework from data. Furthermore, the proposed approach is based on parametric option representations and works well in combination with current policy search methods, which are particularly well suited for continuous real-world tasks. We present results on SMDPs with discrete as well as continuous state-action spaces. The results show that the presented algorithm can combine simple sub-policies to solve complex tasks and can improve learning performance on simpler tasks
Characterising Probabilistic Processes Logically
In this paper we work on (bi)simulation semantics of processes that exhibit
both nondeterministic and probabilistic behaviour. We propose a probabilistic
extension of the modal mu-calculus and show how to derive characteristic
formulae for various simulation-like preorders over finite-state processes
without divergence. In addition, we show that even without the fixpoint
operators this probabilistic mu-calculus can be used to characterise these
behavioural relations in the sense that two states are equivalent if and only
if they satisfy the same set of formulae.Comment: 18 page
Non-Zero Sum Games for Reactive Synthesis
In this invited contribution, we summarize new solution concepts useful for
the synthesis of reactive systems that we have introduced in several recent
publications. These solution concepts are developed in the context of non-zero
sum games played on graphs. They are part of the contributions obtained in the
inVEST project funded by the European Research Council.Comment: LATA'16 invited pape
A Bayesian Nonparametric Approach to Modeling Motion Patterns
The most difficult—and often most essential—
aspect of many interception and tracking tasks is constructing
motion models of the targets to be found. Experts can
often provide only partial information, and fitting parameters
for complex motion patterns can require large amounts
of training data. Specifying how to parameterize complex
motion patterns is in itself a difficult task.
In contrast, nonparametric models are very flexible and
generalize well with relatively little training data. We propose
modeling target motion patterns as a mixture of Gaussian
processes (GP) with a Dirichlet process (DP) prior over
mixture weights. The GP provides a flexible representation
for each individual motion pattern, while the DP assigns observed
trajectories to particular motion patterns. Both automatically
adjust the complexity of the motion model based
on the available data. Our approach outperforms several parametric
models on a helicopter-based car-tracking task on
data collected from the greater Boston area
- …
